969 resultados para Wacker-type reaction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanistic studies of two intramolecular processes, nucleophilic displacement of N-methylmorpholinium in N-methyl-N-{9-oxobicyclo[3,3,1]nonan-2 alpha-yl}morpholinium iodide, anchimerically assisted by keto carbonyl, and a Cannizzaro-type reaction of 3-(2-oxocyclohexyl)propanal, occurring via axial hydride transfer onto the cyclohexanone, are reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pd-supported on WO3-ZrO2 (W/Zr atomic ratio=0.2) calcined at 1073 K was found to be highly active and selective for gas-phase oxidation of ethylene to acetic acid in the presence of water at 423 K and 0.6 MPa. Contact time dependence demonstrated that acetic acid is formed via acetaldehyde formed by a Wacker-type reaction, not through ethanol by hydration of ethylene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chromone-3-carbaldehyde reacts with N-methylglycine or glycine in the presence of excess formaldehyde to produce N-(chromone-3-ylmethyl)-N-methylglycine or N,N-di(chromone-3-ylmethyl)glycine, respectively, by a deformylative Mannich type reaction. Use of alanine or leucine or methionine in place of glycine produces N-(chromone-3-ylmethyl)alanine/-leucine/-methionine, respectively. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dba-free Heck-Matsuda reaction was investigated via direct ESI-MS(/MS) monitoring. Palladium species involved in the reduction of Pd(ii) during a Wacker type reaction and several dba-free arylpalladium transient complexes were detected and characterized. Based on these findings, a more comprehensible catalytic cycle for this pivotal reaction is suggested. © 2013 The Royal Society of Chemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The treatment of cerium metal with ethyl bromosuccinate (1) forms the stabilized organolanthanoid intermediate (2), which reacts with carbonyl compounds in a Reformatsky-type reaction, under mild conditions, to produce functionalized gamma-substituted paraconic acids (4) in good yields. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MoritaBaylisHillman derivatives have been extensively investigated as intermediates in the preparation of important classes of compounds. However, there are intrinsic limitations regarding the structure of the Michael electrophile acceptors, the aldehydes, and the catalysts. Therefore, this transformation has several drawbacks, including, for example, its long reaction times. Herein we present a simple, general, fast, and high-yielding protocol for the one-pot synthesis of MoritaBaylisHillman derivatives. Our approach is driven by a lithium selenolate Michael/aldol operation with concomitant O-functionalization/selenoxide elimination cascade sequences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report an efficient methodology for the direct oxidative esterification of primary alcohols to diether-esters using pyridinium chlorochromate (PCC). Numerous studies were carried out to probe the reaction mechanism and at the same time optimize the reaction conditions. The reaction could be conducted with 1 equivalent of PCC and 1 equivalent of BF3 center dot OEt2. Indications based on literature precedent were that the reaction may proceed via a sequential alcohol oxidation to the aldehyde followed by a putative Cr or boron catalyzed Claisen-Tishchenko-type reaction. Using this efficient methodology, we synthesized a family of novel diether-esters in very good yields; some of these molecules were subsequently tested against both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). In addition, we also disclose a new synthetic strategy for the synthesis of lactam macrocycles with potential biological activity. This methodology included the regioselective borylation of the ester substrate and a subsequent Suzuki-Miyaura coupling to obtain the desired lactam macrocycle.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The synthesis, properties and crystal structure of the cage complex (1-hydroxy-8-methyl-3,6,10,13,15,18-hexaazabicyclo[6.6.5]nonadecane)cobalt(III) chloride hydrate ([Co(Me,OH-absar)] C13.H2O) are reported. The mechanism of the formation of this contracted cavity cage from a nitro-capped hexaazabicycloicosane type cage has been investigated. Treatment of (1-methyl-8-nitro-3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane)cobalt(III) chloride ([Co(Me,NO2-sar)] 3+) with excess base in aqueous solution leads initially to rapid (t1/2 < 1 ms) and reversible deprotonation of one coordinated secondary amine. This species undergoes a retro-Mannich type reaction and imine hydrolysis (t1/2 almost-equal-to 90 s). Quenching the reaction with acid gives rise to a pair of isomeric intermediate species which have been isolated and characterized. They have a pendant arm macrocyclic structure, resulting from the loss of a methylene unit from one of the arms of the cap. Heating either isomer in aqueous solution gives the new cage compound with the contracted cap. It is postulated that this occurs through a Nef reaction, resulting in the formation of a ketone which then condenses with the coordinated primary amine. A comparison with the corresponding bicycloicosane analogue indicates a reduced chromophoric cavity size for the contracted cage. The reduction potential of the cobalt(III)/cobalt(II) couple is 170 mV more negative for the smaller cage, and, in the electronic spectrum of the cobalt(III) complex, the d-d transitions are both shifted to higher energy, corresponding to a stronger ligand field.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An air- and water-stable PEG-supported bidentate nitrogen ligand is prepared and its applications in the palladium-catalyzed Suzuki reaction of aryl halides with arylboronic acids in PEG and Suzuki-type reaction of aryl halides with sodium tetraphenylborate in aqueous media are reported. The homogeneous catalyst system is environmentally friendly and offers the advantages of high activity, reusability and easy separation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The development in the oxidation of olefins to ketones catalyzed by palladium compounds was reviewed. Some improved methods for the oxidation of olefins catalyzed by Wacker-type catalyst systems are also summarized. For this reaction, some new catalyst systems and the reaction mechanism are described. Emphasis has been given to the applications of Pd(I)/HPA(heteropoly acid), Pd(I)/FePc (iron phthalocyanine), Pd (I)/HQ (hydroquinone)/FePc, Pd (I)/HQ/HPA, Pd (I)/CuSO4/HPA catalyst systems in the oxidation of olefins to ketones; the application of Pd(I)/LCoNO2, PdCl2 (MeCN)(2)/CuCl, Pd(OAc)(2)/ pyridine, fluorous biphasic catalyst systems in the oxidation of olefins to ketones is also surveyed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A palladium-catalyzed oxidative reaction is reported which converts dihydropyrans to their corresponding ortholactone. The products are formed in good to excellent yields with a very high level of chemoselectivity and functional group tolerance. Mechanistic studies confirm that the reaction proceeds by a Wacker-type mechanism.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

(A) In recent years, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) fluorophores have attracted considerable interest due to their unique photochemical properties. However detailed studies on the stability of BODIPY and analogues under acidic and basic conditions have been lacking. Thus the stability of a series of BODIPY analogues in acidic (di- and trichloroacetic acid) and basic (aqueous ammonium hydroxide) conditions was investigated using 11B NMR spectroscopy. Among the analogues tested, 4,4-diphenyl BODIPY was the most stable under the conditions used in the experiments. It was found that reaction of 4,4-dimethoxy BODIPY with dichloroacetic acid gave mixed anhydride 4,4-bis(dichloroacetoxy) BODIPY in good yields. Treatment of the latter mixed anhydride with alcohols such as methanol and ethanol in the presence of a base afforded corresponding borate esters, whereas treatment with 1,2-diols such as ethylene glycol and catechol in the presence of a base gave corresponding cyclic borate esters. Furthermore treatment of 4,4-difluoro-8-methyl-BODIPY with secondary amines in dihalomethane resulted in carbon–carbon bond formation at the meso-methyl position of BODIPY via Mannich-type reactions. The resulting modified BODIPY fluorophores possess high fluorescent quantum yields. Five BODIPY analogues bearing potential ion-binding moieties were synthesized via this Mannich-type reaction. Among these, the BODIPY bearing an aza-18-crown-5 tether was found to be selective towards copper (II) ion, resulting in a large blue shift in absorption and sharp fluorescent quenching, whereas aza-15-crown-4 analogue was selected towards fluoride ion, leading to effective florescent quenching and blue shift. (B) Peptide nucleic acids (PNA), as mimics of natural nucleic acids, have been widely applied in molecular biology and biotechnology. Currently, the preparation of PNA oligomers is commonly achieved by a coupling reaction between carboxyl and amino groups in the presence of an activator. In this thesis attempts were made towards the synthesis of PNA through the Staudinger ligation reactions between C-terminal diphenylphosphinomethanethiol thioesters and N-terminal α-azido PNA building blocks.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The proposal in my thesis has been the study of Stereoselective α-alkylation through SN1 type reaction. SN1 type reaction involves a stabilized and reactive carbocation intermediate By taking advantages of stability of particular carbocations, the use of carbocations in selective reactions has been important. In this work has been necessary to know the stability and reactivity of carbocations. And the work of Mayr group has helped to rationalize the behaviour and reactivity between the carbocations and nucleophiles by the use of Mayr’s scale of reactivity. The use of alcohols to performed the stable and reactive carbocations have been the key in my thesis. The direct nucleophilic substitution of alcohols has been a crucial scope in the field of organic synthesis, because offer a wide range of intermediates for the synthesis of natural products and pharmaceutics synthesis. In particular the catalytic nucleophilic direct substitution of alcohols represents a novel methodology for the preparation of a variety of derivatives, and water only as the sub-product in the reaction. The stereochemical control of the transformation C-H bond into stereogenic C-C bond adjacent to carbonyl functionalized has been studied for asymmetric catalysis. And the field of organocatalysis has introduced the use of small organic molecule as catalyst for stereoselective transformations. Merging these two concepts Organocatalysis and Mayr’s scale, my thesis has developed a new approach for the α-alkylation of aldehydes and ketones through SN1 type reaction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A pathway of electron transfer is described that operates in the wild-type reaction center (RC) of the photosynthetic bacterium Rhodobacter sphaeroides. The pathway does not involve the excited state of the special pair dimer of bacteriochlorophylls (P*), but instead is driven by the excited state of the monomeric bacteriochlorophyll (BA*) present in the active branch of pigments along which electron transfer occurs. Pump-probe experiments were performed at 77 K on membrane-bound RCs by using different excitation wavelengths, to investigate the formation of the charge separated state P+HA−. In experiments in which P or BA was selectively excited at 880 nm or 796 nm, respectively, the formation of P+HA− was associated with similar time constants of 1.5 ps and 1.7 ps. However, the spectral changes associated with the two time constants are very different. Global analysis of the transient spectra shows that a mixture of P+BA− and P* is formed in parallel from BA* on a subpicosecond time scale. In contrast, excitation of the inactive branch monomeric bacteriochlorophyll (BB) and the high exciton component of P (P+) resulted in electron transfer only after relaxation to P*. The multiple pathways for primary electron transfer in the bacterial RC are discussed with regard to the mechanism of charge separation in the RC of photosystem II from higher plants.