894 resultados para Quasilinear Elliptic Problems
Resumo:
We develop the a-posteriori error analysis of hp-version interior-penalty discontinuous Galerkin finite element methods for a class of second-order quasilinear elliptic partial differential equations. Computable upper and lower bounds on the error are derived in terms of a natural (mesh-dependent) energy norm. The bounds are explicit in the local mesh size and the local degree of the approximating polynomial. The performance of the proposed estimators within an automatic hp-adaptive refinement procedure is studied through numerical experiments.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this article, we develop the a priori and a posteriori error analysis of hp-version interior penalty discontinuous Galerkin finite element methods for strongly monotone quasi-Newtonian fluid flows in a bounded Lipschitz domain Ω ⊂ ℝd, d = 2, 3. In the latter case, computable upper and lower bounds on the error are derived in terms of a natural energy norm, which are explicit in the local mesh size and local polynomial degree of the approximating finite element method. A series of numerical experiments illustrate the performance of the proposed a posteriori error indicators within an automatic hp-adaptive refinement algorithm.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We prove some multiplicity results concerning quasilinear elliptic equations with natural growth conditions. Techniques of nonsmooth critical point theory are employed.
Resumo:
Dissertação apresentada para obtenção do grau de Doutor em Matemática na especialidade de Equações Diferenciais, pela Universidade Nova de Lisboa,Faculdade de Ciências e Tecnologia
Mutigrid preconditioner for nonconforming discretization of elliptic problems with jump coefficients
Resumo:
In this paper, we present a multigrid preconditioner for solving the linear system arising from the piecewise linear nonconforming Crouzeix-Raviart discretization of second order elliptic problems with jump coe fficients. The preconditioner uses the standard conforming subspaces as coarse spaces. Numerical tests show both robustness with respect to the jump in the coe fficient and near-optimality with respect to the number of degrees of freedom.
Resumo:
We construct and analyze non-overlapping Schwarz methods for a preconditioned weakly over-penalized symmetric interior penalty (WOPSIP) method for elliptic problems.
Resumo:
We present a Galerkin method with piecewise polynomial continuous elements for fully nonlinear elliptic equations. A key tool is the discretization proposed in Lakkis and Pryer, 2011, allowing us to work directly on the strong form of a linear PDE. An added benefit to making use of this discretization method is that a recovered (finite element) Hessian is a byproduct of the solution process. We build on the linear method and ultimately construct two different methodologies for the solution of second order fully nonlinear PDEs. Benchmark numerical results illustrate the convergence properties of the scheme for some test problems as well as the Monge–Amp`ere equation and the Pucci equation.
Resumo:
We propose a numerical method to approximate the solution of second order elliptic problems in nonvariational form. The method is of Galerkin type using conforming finite elements and applied directly to the nonvariational (nondivergence) form of a second order linear elliptic problem. The key tools are an appropriate concept of “finite element Hessian” and a Schur complement approach to solving the resulting linear algebra problem. The method is illustrated with computational experiments on three linear and one quasi-linear PDE, all in nonvariational form.
Resumo:
In the present paper we study the approximation of functions with bounded mixed derivatives by sparse tensor product polynomials in positive order tensor product Sobolev spaces. We introduce a new sparse polynomial approximation operator which exhibits optimal convergence properties in L2 and tensorized View the MathML source simultaneously on a standard k-dimensional cube. In the special case k=2 the suggested approximation operator is also optimal in L2 and tensorized H1 (without essential boundary conditions). This allows to construct an optimal sparse p-version FEM with sparse piecewise continuous polynomial splines, reducing the number of unknowns from O(p2), needed for the full tensor product computation, to View the MathML source, required for the suggested sparse technique, preserving the same optimal convergence rate in terms of p. We apply this result to an elliptic differential equation and an elliptic integral equation with random loading and compute the covariances of the solutions with View the MathML source unknowns. Several numerical examples support the theoretical estimates.
Resumo:
This paper is concerned with the existence of solutions for the quasilinear problem {-div(vertical bar del u vertical bar(N-2) del u) + vertical bar u vertical bar(N-2) u = a(x)g(u) in Omega u = 0 on partial derivative Omega, where Omega subset of R(N) (N >= 2) is an exterior domain; that is, Omega = R(N)\omega, where omega subset of R(N) is a bounded domain, the nonlinearity g(u) has an exponential critical growth at infinity and a(x) is a continuous function and changes sign in Omega. A variational method is applied to establish the existence of a nontrivial solution for the above problem.
Resumo:
We consider the Dirichlet problem for the equation -Delta u = lambda u +/- (x, u) + h(x) in a bounded domain, where f has a sublinear growth and h is an element of L-2. We find suitable conditions on f and It in order to have at least two solutions for X near to an eigenvalue of -Delta. A typical example to which our results apply is when f (x, u) behaves at infinity like a(x)vertical bar u vertical bar(q-2)u, with M > a(x) > delta > 0, and I < q < 2. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
In this study, a given quasilinear problem is solved using variational methods. In particular, the existence of nontrivial solutions for GP is examined using minimax methods. The main theorem on the existence of a nontrivial solution for GP is detailed.