Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems II: Strongly monotone quasi-Newtonian flows
Data(s) |
30/09/2013
|
---|---|
Resumo |
In this article, we develop the a priori and a posteriori error analysis of hp-version interior penalty discontinuous Galerkin finite element methods for strongly monotone quasi-Newtonian fluid flows in a bounded Lipschitz domain Ω ⊂ ℝd, d = 2, 3. In the latter case, computable upper and lower bounds on the error are derived in terms of a natural energy norm, which are explicit in the local mesh size and local polynomial degree of the approximating finite element method. A series of numerical experiments illustrate the performance of the proposed a posteriori error indicators within an automatic hp-adaptive refinement algorithm. |
Formato |
application/pdf |
Identificador |
http://boris.unibe.ch/41928/1/report12-01.pdf Wihler, Thomas; Congreve, Scott Spencer; Süli, E. (2013). Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems II: Strongly monotone quasi-Newtonian flows. IMA JOURNAL OF NUMERICAL ANALYSIS, 33(4), pp. 1386-1415. Oxford 10.1093/imanum/drs046 <http://dx.doi.org/10.1093/imanum/drs046> doi:10.7892/boris.41928 info:doi:10.1093/imanum/drs046 urn:issn:0272-4979 |
Idioma(s) |
eng |
Publicador |
Oxford |
Relação |
http://boris.unibe.ch/41928/ http://imajna.oxfordjournals.org/content/early/2013/03/28/imanum.drs046 |
Direitos |
info:eu-repo/semantics/openAccess |
Fonte |
Wihler, Thomas; Congreve, Scott Spencer; Süli, E. (2013). Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems II: Strongly monotone quasi-Newtonian flows. IMA JOURNAL OF NUMERICAL ANALYSIS, 33(4), pp. 1386-1415. Oxford 10.1093/imanum/drs046 <http://dx.doi.org/10.1093/imanum/drs046> |
Palavras-Chave | #510 Mathematics |
Tipo |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion PeerReviewed |