Quasilinear dirichlet problems in RN with critical growth
| Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
|---|---|
| Data(s) |
27/05/2014
27/05/2014
01/01/2001
|
| Resumo |
In this study, a given quasilinear problem is solved using variational methods. In particular, the existence of nontrivial solutions for GP is examined using minimax methods. The main theorem on the existence of a nontrivial solution for GP is detailed. |
| Formato |
1-20 |
| Identificador |
http://dx.doi.org/10.1016/S0362-546X(99)00128-5 Nonlinear Analysis, Theory, Methods and Applications, v. 43, n. 1, p. 1-20, 2001. 0362-546X http://hdl.handle.net/11449/66412 10.1016/S0362-546X(99)00128-5 WOS:000089808900001 2-s2.0-0343353810 |
| Idioma(s) |
eng |
| Relação |
Nonlinear Analysis, Theory, Methods and Applications |
| Direitos |
closedAccess |
| Palavras-Chave | #Boundary conditions #Laplace transforms #Parameter estimation #Perturbation techniques #Set theory #Theorem proving #Ambrosetti-Rabinowitz condition #Concentration compactness principle #Critical Sobolev exponent #Dirichlet problem #Mountain pass theorem #Quasilinear problem #Variational techniques |
| Tipo |
info:eu-repo/semantics/article |