INDEFINITE QUASILINEAR ELLIPTIC EQUATIONS IN EXTERIOR DOMAINS WITH EXPONENTIAL CRITICAL GROWTH


Autoria(s): ALVES, Claudianor O.; FREITAS, Luciana Roze de; SOARES, Sergio H. M.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2011

Resumo

This paper is concerned with the existence of solutions for the quasilinear problem {-div(vertical bar del u vertical bar(N-2) del u) + vertical bar u vertical bar(N-2) u = a(x)g(u) in Omega u = 0 on partial derivative Omega, where Omega subset of R(N) (N >= 2) is an exterior domain; that is, Omega = R(N)\omega, where omega subset of R(N) is a bounded domain, the nonlinearity g(u) has an exponential critical growth at infinity and a(x) is a continuous function and changes sign in Omega. A variational method is applied to establish the existence of a nontrivial solution for the above problem.

CNPq/Brazil[620150/2008-4], [303080/2009-4], [313237/2009-3]

Identificador

DIFFERENTIAL AND INTEGRAL EQUATIONS, NEW YORK, v.24, n.11/Dez, p.1047-1062, 2011

0893-4983

http://producao.usp.br/handle/BDPI/28804

http://projecteuclid.org/euclid.die/1356012875

Idioma(s)

eng

Publicador

KHAYYAM PUBL CO INC

NEW YORK

Relação

Differential and Integral Equations

Direitos

closedAccess

Copyright KHAYYAM PUBL CO INC

Palavras-Chave #NONLINEARITIES #Mathematics, Applied #Mathematics
Tipo

article

original article

publishedVersion