996 resultados para Periodic functions.
Resumo:
Let (X, parallel to . parallel to) be a Banach space and omega is an element of R. A bounded function u is an element of C([0, infinity); X) is called S-asymptotically omega-periodic if lim(t ->infinity)[u(t + omega) - u(t)] = 0. In this paper, we establish conditions under which an S-asymptotically omega-periodic function is asymptotically omega-periodic and we discuss the existence of S-asymptotically omega-periodic and asymptotically omega-periodic solutions for an abstract integral equation. Some applications to partial differential equations and partial integro-differential equations are considered. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Spine title: Multiply periodic functions.
Resumo:
2000 Mathematics Subject Classification: 34K99, 44A15, 44A35, 42A75, 42A63
Resumo:
AMS Subject Classification 2010: 41A25, 41A27, 41A35, 41A36, 41A40, 42Al6, 42A85.
Resumo:
A temporally global solution, if it exists, of a nonautonomous ordinary differential equation need not be periodic, almost periodic or almost automorphic when the forcing term is periodic, almost periodic or almost automorphic, respectively. An alternative class of functions extending periodic and almost periodic functions which has the property that a bounded temporally global solution solution of a nonautonomous ordinary differential equation belongs to this class when the forcing term does is introduced here. Specifically, the class of functions consists of uniformly continuous functions, defined on the real line and taking values in a Banach space, which have pre-compact ranges. Besides periodic and almost periodic functions, this class also includes many nonrecurrent functions. Assuming a hyperbolic structure for the unperturbed linear equation and certain properties for the linear and nonlinear parts, the existence of a special bounded entire solution, as well the existence of stable and unstable manifolds of this solution are established. Moreover, it is shown that this solution and these manifolds inherit the temporal behaviour of the vector field equation. In the stable case it is shown that this special solution is the pullback attractor of the system. A class of infinite dimensional examples involving a linear operator consisting of a time independent part which generates a C(0)-semigroup plus a small time dependent part is presented and applied to systems of coupled heat and beam equations. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this work, motivated by non-ideal mechanical systems, we investigate the following O.D.E. ẋ = f (x) + εg (x, t) + ε2g (x, t, ε), where x ∈ Ω ⊂ ℝn, g, g are T periodic functions of t and there is a 0 ∈ Ω such that f (a 0) = 0 and f′ (a0) is a nilpotent matrix. When n = 3 and f (x) = (0, q (x 3) , 0) we get results on existence and stability of periodic orbits. We apply these results in a non ideal mechanical system: the Centrifugal Vibrator. We make a stability analysis of this dynamical system and get a characterization of the Sommerfeld Effect as a bifurcation of periodic orbits. © 2007 Birkhäuser Verlag, Basel.
Resumo:
In this work we study the periodic solutions, their stability and bifurcation for the class of Duffing differential equation mathematical equation represented where C > 0, ε > 0 and Λ are real parameter, A(t), b(t) and h(t) are continuous T periodic functions and ε is sufficiently small. Our results are proved using the averaging method of first order.
Resumo:
This thesis presents a new approach for the numerical solution of three-dimensional problems in elastodynamics. The new methodology, which is based on a recently introduced Fourier continuation (FC) algorithm for the solution of Partial Differential Equations on the basis of accurate Fourier expansions of possibly non-periodic functions, enables fast, high-order solutions of the time-dependent elastic wave equation in a nearly dispersionless manner, and it requires use of CFL constraints that scale only linearly with spatial discretizations. A new FC operator is introduced to treat Neumann and traction boundary conditions, and a block-decomposed (sub-patch) overset strategy is presented for implementation of general, complex geometries in distributed-memory parallel computing environments. Our treatment of the elastic wave equation, which is formulated as a complex system of variable-coefficient PDEs that includes possibly heterogeneous and spatially varying material constants, represents the first fully-realized three-dimensional extension of FC-based solvers to date. Challenges for three-dimensional elastodynamics simulations such as treatment of corners and edges in three-dimensional geometries, the existence of variable coefficients arising from physical configurations and/or use of curvilinear coordinate systems and treatment of boundary conditions, are all addressed. The broad applicability of our new FC elasticity solver is demonstrated through application to realistic problems concerning seismic wave motion on three-dimensional topographies as well as applications to non-destructive evaluation where, for the first time, we present three-dimensional simulations for comparison to experimental studies of guided-wave scattering by through-thickness holes in thin plates.
Resumo:
Sufficient conditions are derived for the validity of approximate periodic solutions of a class of second order ordinary nonlinear differential equations. An approximate solution is defined to be valid if an exact solution exists in a neighborhood of the approximation.
Two classes of validity criteria are developed. Existence is obtained using the contraction mapping principle in one case, and the Schauder-Leray fixed point theorem in the other. Both classes of validity criteria make use of symmetry properties of periodic functions, and both classes yield an upper bound on a norm of the difference between the approximate and exact solution. This bound is used in a procedure which establishes sufficient stability conditions for the approximated solution.
Application to a system with piecewise linear restoring force (bilinear system) reveals that the approximate solution obtained by the method of averaging is valid away from regions where the response exhibits vertical tangents. A narrow instability region is obtained near one-half the natural frequency of the equivalent linear system. Sufficient conditions for the validity of resonant solutions are also derived, and two term harmonic balance approximate solutions which exhibit ultraharmonic and subharmonic resonances are studied.
Resumo:
Wydział Matematyki i Informatyki
Resumo:
In this thesis we consider Wiener-Hopf-Hankel operators with Fourier symbols in the class of almost periodic, semi-almost periodic and piecewise almost periodic functions. In the first place, we consider Wiener-Hopf-Hankel operators acting between L2 Lebesgue spaces with possibly different Fourier matrix symbols in the Wiener-Hopf and in the Hankel operators. In the second place, we consider these operators with equal Fourier symbols and acting between weighted Lebesgue spaces Lp(R;w), where 1 < p < 1 and w belongs to a subclass of Muckenhoupt weights. In addition, singular integral operators with Carleman shift and almost periodic coefficients are also object of study. The main purpose of this thesis is to obtain regularity properties characterizations of those classes of operators. By regularity properties we mean those that depend on the kernel and cokernel of the operator. The main techniques used are the equivalence relations between operators and the factorization theory. An invertibility characterization for the Wiener-Hopf-Hankel operators with symbols belonging to the Wiener subclass of almost periodic functions APW is obtained, assuming that a particular matrix function admits a numerical range bounded away from zero and based on the values of a certain mean motion. For Wiener-Hopf-Hankel operators acting between L2-spaces and with possibly different AP symbols, criteria for the semi-Fredholm property and for one-sided and both-sided invertibility are obtained and the inverses for all possible cases are exhibited. For such results, a new type of AP factorization is introduced. Singular integral operators with Carleman shift and scalar almost periodic coefficients are also studied. Considering an auxiliar and simpler operator, and using appropriate factorizations, the dimensions of the kernels and cokernels of those operators are obtained. For Wiener-Hopf-Hankel operators with (possibly different) SAP and PAP matrix symbols and acting between L2-spaces, criteria for the Fredholm property are presented as well as the sum of the Fredholm indices of the Wiener-Hopf plus Hankel and Wiener-Hopf minus Hankel operators. By studying dependencies between different matrix Fourier symbols of Wiener-Hopf plus Hankel operators acting between L2-spaces, results about the kernel and cokernel of those operators are derived. For Wiener-Hopf-Hankel operators acting between weighted Lebesgue spaces, Lp(R;w), a study is made considering equal scalar Fourier symbols in the Wiener-Hopf and in the Hankel operators and belonging to the classes of APp;w, SAPp;w and PAPp;w. It is obtained an invertibility characterization for Wiener-Hopf plus Hankel operators with APp;w symbols. In the cases for which the Fourier symbols of the operators belong to SAPp;w and PAPp;w, it is obtained semi-Fredholm criteria for Wiener-Hopf-Hankel operators as well as formulas for the Fredholm indices of those operators.
Resumo:
The paper proposes a method of performing system identification of a linear system in the presence of bounded disturbances. The disturbances may be piecewise parabolic or periodic functions. The method is demonstrated effectively on two example systems with a range of disturbances.
Resumo:
The rotational motion of an artificial satellite is studied by considering torques produced by gravity gradient and direct solar radiation pressure. A satellite of circular cylinder shape is considered here, and Andoyers variables are used to describe the rotational motion. Expressions for direct solar radiation torque are derived. When the earth's shadow is not considered, an analytical solution is obtained using Lagrange's method of variation of parameters. A semi-analytical procedure is proposed to predict the satellite's attitude under the influence of the earth's shadow. The analytical solution shows that angular variables are linear and periodic functions of time while their conjugates suffer only periodic variations. When compared, numerical and analytical solutions have a good agreement during the time range considered.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We give a partition of the critical strip, associated with each partial sum 1 + 2z + ... + nz of the Riemann zeta function for Re z < −1, formed by infinitely many rectangles for which a formula allows us to count the number of its zeros inside each of them with an error, at most, of two zeros. A generalization of this formula is also given to a large class of almost-periodic functions with bounded spectrum.