On the existence and stability of periodic orbits in non ideal problems: General results
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
27/05/2014
27/05/2014
01/11/2007
|
Resumo |
In this work, motivated by non-ideal mechanical systems, we investigate the following O.D.E. ẋ = f (x) + εg (x, t) + ε2g (x, t, ε), where x ∈ Ω ⊂ ℝn, g, g are T periodic functions of t and there is a 0 ∈ Ω such that f (a 0) = 0 and f′ (a0) is a nilpotent matrix. When n = 3 and f (x) = (0, q (x 3) , 0) we get results on existence and stability of periodic orbits. We apply these results in a non ideal mechanical system: the Centrifugal Vibrator. We make a stability analysis of this dynamical system and get a characterization of the Sommerfeld Effect as a bifurcation of periodic orbits. © 2007 Birkhäuser Verlag, Basel. |
Formato |
940-958 |
Identificador |
http://dx.doi.org/10.1007/s00033-006-5116-5 Zeitschrift fur Angewandte Mathematik und Physik, v. 58, n. 6, p. 940-958, 2007. 0044-2275 http://hdl.handle.net/11449/69945 10.1007/s00033-006-5116-5 2-s2.0-46649107309 |
Idioma(s) |
eng |
Relação |
Zeitschrift fur Angewandte Mathematik und Physik |
Direitos |
closedAccess |
Palavras-Chave | #Bifurcation #Periodic orbits #Regular perturbation theory #Sommerfeld effect #Stability |
Tipo |
info:eu-repo/semantics/article |