The Critical Strips of the Sums 1 + 2z + ... + nz
Contribuinte(s) |
Universidad de Alicante. Departamento de Análisis Matemático Curvas Alpha-Densas. Análisis y Geometría Local |
---|---|
Data(s) |
19/12/2013
19/12/2013
2011
|
Resumo |
We give a partition of the critical strip, associated with each partial sum 1 + 2z + ... + nz of the Riemann zeta function for Re z < −1, formed by infinitely many rectangles for which a formula allows us to count the number of its zeros inside each of them with an error, at most, of two zeros. A generalization of this formula is also given to a large class of almost-periodic functions with bounded spectrum. |
Identificador |
Abstract and Applied Analysis. 2011, Article ID 909674, 15 pages. doi:10.1155/2011/909674 1085-3375 (Print) 1687-0409 (Online) http://hdl.handle.net/10045/34680 10.1155/2011/909674 |
Idioma(s) |
eng |
Publicador |
Hindawi Publishing Corporation |
Relação |
http://dx.doi.org/10.1155/2011/909674 |
Direitos |
Copyright © 2011 G. Mora and J. M. Sepulcre. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. info:eu-repo/semantics/openAccess |
Palavras-Chave | #Partition #Critical strip #Riemann zeta function #Análisis Matemático |
Tipo |
info:eu-repo/semantics/article |