The Critical Strips of the Sums 1 + 2z + ... + nz


Autoria(s): Mora Martínez, Gaspar; Sepulcre, Juan Matias
Contribuinte(s)

Universidad de Alicante. Departamento de Análisis Matemático

Curvas Alpha-Densas. Análisis y Geometría Local

Data(s)

19/12/2013

19/12/2013

2011

Resumo

We give a partition of the critical strip, associated with each partial sum 1 + 2z + ... + nz of the Riemann zeta function for Re z < −1, formed by infinitely many rectangles for which a formula allows us to count the number of its zeros inside each of them with an error, at most, of two zeros. A generalization of this formula is also given to a large class of almost-periodic functions with bounded spectrum.

Identificador

Abstract and Applied Analysis. 2011, Article ID 909674, 15 pages. doi:10.1155/2011/909674

1085-3375 (Print)

1687-0409 (Online)

http://hdl.handle.net/10045/34680

10.1155/2011/909674

Idioma(s)

eng

Publicador

Hindawi Publishing Corporation

Relação

http://dx.doi.org/10.1155/2011/909674

Direitos

Copyright © 2011 G. Mora and J. M. Sepulcre. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

info:eu-repo/semantics/openAccess

Palavras-Chave #Partition #Critical strip #Riemann zeta function #Análisis Matemático
Tipo

info:eu-repo/semantics/article