On S-asymptotically omega-periodic functions and applications
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
05/11/2013
05/11/2013
2012
|
Resumo |
Let (X, parallel to . parallel to) be a Banach space and omega is an element of R. A bounded function u is an element of C([0, infinity); X) is called S-asymptotically omega-periodic if lim(t ->infinity)[u(t + omega) - u(t)] = 0. In this paper, we establish conditions under which an S-asymptotically omega-periodic function is asymptotically omega-periodic and we discuss the existence of S-asymptotically omega-periodic and asymptotically omega-periodic solutions for an abstract integral equation. Some applications to partial differential equations and partial integro-differential equations are considered. (C) 2011 Elsevier Ltd. All rights reserved. |
Identificador |
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, OXFORD, v. 75, n. 2, supl. 1, Part 2, pp. 651-661, JAN, 2012 0362-546X http://www.producao.usp.br/handle/BDPI/40943 10.1016/j.na.2011.08.059 |
Idioma(s) |
eng |
Publicador |
PERGAMON-ELSEVIER SCIENCE LTD OXFORD |
Relação |
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS |
Direitos |
restrictedAccess Copyright PERGAMON-ELSEVIER SCIENCE LTD |
Palavras-Chave | #S-ASYMPTOTICALLY OMEGA-PERIODIC FUNCTION #ABSTRACT INTEGRAL EQUATIONS #INTEGRO-DIFFERENTIAL EQUATIONS #DIFFERENTIAL EQUATIONS #MATHEMATICS, APPLIED #MATHEMATICS |
Tipo |
article original article publishedVersion |