On S-asymptotically omega-periodic functions and applications


Autoria(s): Hernandez, Michelle Fernanda Pierri
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

05/11/2013

05/11/2013

2012

Resumo

Let (X, parallel to . parallel to) be a Banach space and omega is an element of R. A bounded function u is an element of C([0, infinity); X) is called S-asymptotically omega-periodic if lim(t ->infinity)[u(t + omega) - u(t)] = 0. In this paper, we establish conditions under which an S-asymptotically omega-periodic function is asymptotically omega-periodic and we discuss the existence of S-asymptotically omega-periodic and asymptotically omega-periodic solutions for an abstract integral equation. Some applications to partial differential equations and partial integro-differential equations are considered. (C) 2011 Elsevier Ltd. All rights reserved.

Identificador

NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, OXFORD, v. 75, n. 2, supl. 1, Part 2, pp. 651-661, JAN, 2012

0362-546X

http://www.producao.usp.br/handle/BDPI/40943

10.1016/j.na.2011.08.059

http://dx.doi.org/10.1016/j.na.2011.08.059

Idioma(s)

eng

Publicador

PERGAMON-ELSEVIER SCIENCE LTD

OXFORD

Relação

NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS

Direitos

restrictedAccess

Copyright PERGAMON-ELSEVIER SCIENCE LTD

Palavras-Chave #S-ASYMPTOTICALLY OMEGA-PERIODIC FUNCTION #ABSTRACT INTEGRAL EQUATIONS #INTEGRO-DIFFERENTIAL EQUATIONS #DIFFERENTIAL EQUATIONS #MATHEMATICS, APPLIED #MATHEMATICS
Tipo

article

original article

publishedVersion