14 resultados para INVOLUTIONS
Resumo:
Let L be an RA loop, that is, a loop whose loop ring over any coefficient ring R is an alternative, but not associative, ring. Let l bar right arrow l(theta) denote an involution on L and extend it linearly to the loop ring RL. An element alpha is an element of RL is symmetric if alpha(theta) = alpha and skew-symmetric if alpha(theta) = -alpha. In this paper, we show that there exists an involution making the symmetric elements of RL commute if and only if the characteristic of R is 2 or theta is the canonical involution on L, and an involution making the skew-symmetric elements of RL commute if and only if the characteristic of R is 2 or 4.
Resumo:
Let ZG be the integral group ring of the finite nonabelian group G over the ring of integers Z, and let * be an involution of ZG that extends one of G. If x and y are elements of G, we investigate when pairs of the form (u(k,m)(x*), u(k,m)(x*)) or (u(k,m)(x), u(k,m)(y)), formed respectively by Bass cyclic and *-symmetric Bass cyclic units, generate a free noncyclic subgroup of the unit group of ZG.
Resumo:
If * : G -> G is an involution on the finite group G, then * extends to an involution on the integral group ring Z[G] . In this paper, we consider whether bicyclic units u is an element of Z[G] exist with the property that the group < u, u*> generated by u and u* is free on the two generators. If this occurs, we say that (u, u*)is a free bicyclic pair. It turns out that the existence of u depends strongly upon the structure of G and on the nature of the involution. One positive result here is that if G is a nonabelian group with all Sylow subgroups abelian, then for any involution *, Z[G] contains a free bicyclic pair.
Resumo:
In this work we show that the smooth classification of divergent diagrams of folds (f(1),..., f(s)) : (R-n, 0) -> (R-n x(...)xR(n), 0) can be reduced to the classification of the s-tuples (p(1)., W) of associated involutions. We apply the result to obtain normal forms when s <= n and {p(1),...,p(s)} is a transversal set of linear involutions. A complete description is given when s = 2 and n >= 2. We also present a brief discussion on applications of our results to the study of discontinuous vector fields and discrete reversible dynamical systems.
Resumo:
In this paper we obtain a result on simultaneous linearization for a class of pairs of involutions whose composition is normally hyperbolic. This extends the corresponding result when the composition of the involutions is a hyperbolic germ of diffeomorphism. Inside the class of pairs with normally hyperbolic composition, we obtain a characterization theorem for the composition to be hyperbolic. In addition, related to the class of interest, we present the classification of pairs of linear involutions via linear conjugacy. © 2012 Elsevier Masson SAS.
Resumo:
Let T : M → M be a smooth involution on a closed smooth manifold and F = n j=0 F j the fixed point set of T, where F j denotes the union of those components of F having dimension j and thus n is the dimension of the component of F of largest dimension. In this paper we prove the following result, which characterizes a small codimension phenomenon: suppose that n ≥ 4 is even and F has one of the following forms: 1) F = F n ∪ F 3 ∪ F 2 ∪ {point}; 2) F = F n ∪ F 3 ∪ F 2 ; 3) F = F n ∪ F 3 ∪ {point}; or 4) F = F n ∪ F 3 . Also, suppose that the normal bundles of F n, F 3 and F 2 in M do not bound. If k denote the codimension of F n, then k ≤ 4. Further, we construct involutions showing that this bound is best possible in the cases 2) and 4), and in the cases 1) and 3) when n is of the form n = 4t, with t ≥ 1.
Resumo:
Let phi: a"e(2) -> a"e(2) be an orientation-preserving C (1) involution such that phi(0) = 0. Let Spc(phi) = {Eigenvalues of D phi(p) | p a a"e(2)}. We prove that if Spc(phi) aS, a"e or Spc(phi) a (c) [1, 1 + epsilon) = a... for some epsilon > 0, then phi is globally C (1) conjugate to the linear involution D phi(0) via the conjugacy h = (I + D phi(0)phi)/2,where I: a"e(2) -> a"e(2) is the identity map. Similarly, we prove that if phi is an orientation-reversing C (1) involution such that phi(0) = 0 and Trace (D phi(0)D phi(p) > - 1 for all p a a"e(2), then phi is globally C (1) conjugate to the linear involution D phi(0) via the conjugacy h. Finally, we show that h may fail to be a global linearization of phi if the above conditions are not fulfilled.
Resumo:
Mode of access: Internet.
Resumo:
Let D be a division ring with center k, and let D-dagger be its multiplicative group. We investigate the existence of free groups in D-dagger, and free algebras and free group algebras in D. We also go through the case when D has an involution * and consider the existence of free symmetric and unitary pairs in D-dagger.
Resumo:
In 1969, Lovasz asked whether every connected, vertex-transitive graph has a Hamilton path. This question has generated a considerable amount of interest, yet remains vastly open. To date, there exist no known connected, vertex-transitive graph that does not possess a Hamilton path. For the Cayley graphs, a subclass of vertex-transitive graphs, the following conjecture was made: Weak Lovász Conjecture: Every nontrivial, finite, connected Cayley graph is hamiltonian. The Chen-Quimpo Theorem proves that Cayley graphs on abelian groups flourish with Hamilton cycles, thus prompting Alspach to make the following conjecture: Alspach Conjecture: Every 2k-regular, connected Cayley graph on a finite abelian group has a Hamilton decomposition. Alspach’s conjecture is true for k = 1 and 2, but even the case k = 3 is still open. It is this case that this thesis addresses. Chapters 1–3 give introductory material and past work on the conjecture. Chapter 3 investigates the relationship between 6-regular Cayley graphs and associated quotient graphs. A proof of Alspach’s conjecture is given for the odd order case when k = 3. Chapter 4 provides a proof of the conjecture for even order graphs with 3-element connection sets that have an element generating a subgroup of index 2, and having a linear dependency among the other generators. Chapter 5 shows that if Γ = Cay(A, {s1, s2, s3}) is a connected, 6-regular, abelian Cayley graph of even order, and for some1 ≤ i ≤ 3, Δi = Cay(A/(si), {sj1 , sj2}) is 4-regular, and Δi ≄ Cay(ℤ3, {1, 1}), then Γ has a Hamilton decomposition. Alternatively stated, if Γ = Cay(A, S) is a connected, 6-regular, abelian Cayley graph of even order, then Γ has a Hamilton decomposition if S has no involutions, and for some s ∈ S, Cay(A/(s), S) is 4-regular, and of order at least 4. Finally, the Appendices give computational data resulting from C and MAGMA programs used to generate Hamilton decompositions of certain non-isomorphic Cayley graphs on low order abelian groups.
Resumo:
In this paper, we commence the study of the so called supplementarity measures. They are introduced axiomatically and are then related to incompatibility measures by antonyms. To do this, we have to establish what we mean by antonymous measure. We then prove that, under certain conditions, supplementarity and incompatibility measuresare antonymous. Besides, with the aim of constructing antonymous measures, we introduce the concept of involution on the set made up of all the ordered pairs of fuzzy sets. Finally, we obtain some antonymous supplementarity measures from incompatibility measures by means of involutions.
Resumo:
2000 Mathematics Subject Classification: 16R50, 16R10.
Resumo:
For an arbitrary associative unital ring RR, let J1J1 and J2J2 be the following noncommutative, birational, partly defined involutions on the set M3(R)M3(R) of 3×33×3 matrices over RR: J1(M)=M−1J1(M)=M−1 (the usual matrix inverse) and J2(M)jk=(Mkj)−1J2(M)jk=(Mkj)−1 (the transpose of the Hadamard inverse).
We prove the surprising conjecture by Kontsevich that (J2∘J1)3(J2∘J1)3 is the identity map modulo the DiagL×DiagRDiagL×DiagR action (D1,D2)(M)=D−11MD2(D1,D2)(M)=D1−1MD2 of pairs of invertible diagonal matrices. That is, we show that, for each MM in the domain where (J2∘J1)3(J2∘J1)3 is defined, there are invertible diagonal 3×33×3 matrices D1=D1(M)D1=D1(M) and D2=D2(M)D2=D2(M) such that (J2∘J1)3(M)=D−11MD2(J2∘J1)3(M)=D1−1MD2.