On global linearization of planar involutions
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
29/10/2013
29/10/2013
02/08/2013
|
Resumo |
Let phi: a"e(2) -> a"e(2) be an orientation-preserving C (1) involution such that phi(0) = 0. Let Spc(phi) = {Eigenvalues of D phi(p) | p a a"e(2)}. We prove that if Spc(phi) aS, a"e or Spc(phi) a (c) [1, 1 + epsilon) = a... for some epsilon > 0, then phi is globally C (1) conjugate to the linear involution D phi(0) via the conjugacy h = (I + D phi(0)phi)/2,where I: a"e(2) -> a"e(2) is the identity map. Similarly, we prove that if phi is an orientation-reversing C (1) involution such that phi(0) = 0 and Trace (D phi(0)D phi(p) > - 1 for all p a a"e(2), then phi is globally C (1) conjugate to the linear involution D phi(0) via the conjugacy h. Finally, we show that h may fail to be a global linearization of phi if the above conditions are not fulfilled. FAPESP-BRAZIL [2009/02380-0, 2008/02841-4, 2007/06896-5] FAPESP (Brazil) |
Identificador |
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, NEW YORK, v. 43, n. 4, supl. 4, Part 1, pp. 637-653, DEC, 2012 1678-7544 http://www.producao.usp.br/handle/BDPI/36533 10.1007/s00574-012-0030-2 |
Idioma(s) |
eng |
Publicador |
SPRINGER NEW YORK |
Relação |
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY |
Direitos |
closedAccess Copyright SPRINGER |
Palavras-Chave | #PLANAR INVOLUTION #LINEARIZATION #SMOOTH CONJUGACY #FIXED POINT #DIFFERENTIABLE VECTOR-FIELDS #ASYMPTOTIC STABILITY #FIXED-POINT #C-1 MAPS #JACOBIAN CONJECTURE #REAL PLANE #INJECTIVITY #INFINITY #R-2 #MATHEMATICS |
Tipo |
article original article publishedVersion |