INVOLUTIONS AND FREE PAIRS OF BASS CYCLIC UNITS IN INTEGRAL GROUP RINGS
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2011
|
Resumo |
Let ZG be the integral group ring of the finite nonabelian group G over the ring of integers Z, and let * be an involution of ZG that extends one of G. If x and y are elements of G, we investigate when pairs of the form (u(k,m)(x*), u(k,m)(x*)) or (u(k,m)(x), u(k,m)(y)), formed respectively by Bass cyclic and *-symmetric Bass cyclic units, generate a free noncyclic subgroup of the unit group of ZG. CNPq[300.128/2008-8] Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fapesp-Brazil[Tematico 2009/52665-0] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) NSA[H98230-10-1-0217] NSA |
Identificador |
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, v.10, n.4, p.711-725, 2011 0219-4988 http://producao.usp.br/handle/BDPI/30668 10.1142/S0219498811004872 |
Idioma(s) |
eng |
Publicador |
WORLD SCIENTIFIC PUBL CO PTE LTD |
Relação |
Journal of Algebra and Its Applications |
Direitos |
restrictedAccess Copyright WORLD SCIENTIFIC PUBL CO PTE LTD |
Palavras-Chave | #Integral group rings #involutions #unit groups #Bass cyclic units #free subgroups #symmetric group #LINEAR-GROUPS #Mathematics, Applied #Mathematics |
Tipo |
article original article publishedVersion |