INVOLUTIONS AND FREE PAIRS OF BASS CYCLIC UNITS IN INTEGRAL GROUP RINGS


Autoria(s): GONCALVES, J. Z.; PASSMAN, D. S.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2011

Resumo

Let ZG be the integral group ring of the finite nonabelian group G over the ring of integers Z, and let * be an involution of ZG that extends one of G. If x and y are elements of G, we investigate when pairs of the form (u(k,m)(x*), u(k,m)(x*)) or (u(k,m)(x), u(k,m)(y)), formed respectively by Bass cyclic and *-symmetric Bass cyclic units, generate a free noncyclic subgroup of the unit group of ZG.

CNPq[300.128/2008-8]

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Fapesp-Brazil[Tematico 2009/52665-0]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

NSA[H98230-10-1-0217]

NSA

Identificador

JOURNAL OF ALGEBRA AND ITS APPLICATIONS, v.10, n.4, p.711-725, 2011

0219-4988

http://producao.usp.br/handle/BDPI/30668

10.1142/S0219498811004872

http://dx.doi.org/10.1142/S0219498811004872

Idioma(s)

eng

Publicador

WORLD SCIENTIFIC PUBL CO PTE LTD

Relação

Journal of Algebra and Its Applications

Direitos

restrictedAccess

Copyright WORLD SCIENTIFIC PUBL CO PTE LTD

Palavras-Chave #Integral group rings #involutions #unit groups #Bass cyclic units #free subgroups #symmetric group #LINEAR-GROUPS #Mathematics, Applied #Mathematics
Tipo

article

original article

publishedVersion