Divergent diagrams of folds and simultaneous conjugacy of involutions


Autoria(s): Mancini, S.; Manoel, M.; Teixeira, M. A.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

26/02/2014

20/05/2014

26/02/2014

20/05/2014

01/04/2005

Resumo

In this work we show that the smooth classification of divergent diagrams of folds (f(1),..., f(s)) : (R-n, 0) -> (R-n x(...)xR(n), 0) can be reduced to the classification of the s-tuples (p(1)., W) of associated involutions. We apply the result to obtain normal forms when s <= n and {p(1),...,p(s)} is a transversal set of linear involutions. A complete description is given when s = 2 and n >= 2. We also present a brief discussion on applications of our results to the study of discontinuous vector fields and discrete reversible dynamical systems.

Formato

657-674

Identificador

http://dx.doi.org/10.3934/dcds.2005.12.657

Discrete and Continuous Dynamical Systems. Springfield: Amer Inst Mathematical Sciences, v. 12, n. 4, p. 657-674, 2005.

1078-0947

http://hdl.handle.net/11449/25106

10.3934/dcds.2005.12.657

WOS:000228560700006

Idioma(s)

eng

Publicador

Amer Inst Mathematical Sciences

Relação

Discrete and Continuous Dynamical Systems

Direitos

closedAccess

Palavras-Chave #divergent diagram of folds #involution #singularities #normal form #discontinuous vector fields #reversible diffeomorphisms
Tipo

info:eu-repo/semantics/article