Involutions of RA Loops


Autoria(s): GOODAIRE, Edgar G.; MILIES, Cesar Polcino
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2009

Resumo

Let L be an RA loop, that is, a loop whose loop ring over any coefficient ring R is an alternative, but not associative, ring. Let l bar right arrow l(theta) denote an involution on L and extend it linearly to the loop ring RL. An element alpha is an element of RL is symmetric if alpha(theta) = alpha and skew-symmetric if alpha(theta) = -alpha. In this paper, we show that there exists an involution making the symmetric elements of RL commute if and only if the characteristic of R is 2 or theta is the canonical involution on L, and an involution making the skew-symmetric elements of RL commute if and only if the characteristic of R is 2 or 4.

Natural Sciences and Engineering Research Council of Canada

Natural Sciences and Engineering Research Council of Canada

FAPESP[2005/60411-8]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

CNPq[300243/79-0(RN)]

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Identificador

CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, v.52, n.2, p.245-256, 2009

0008-4395

http://producao.usp.br/handle/BDPI/30586

http://apps.isiknowledge.com/InboundService.do?Func=Frame&product=WOS&action=retrieve&SrcApp=EndNote&UT=000265953400009&Init=Yes&SrcAuth=ResearchSoft&mode=FullRecord

Idioma(s)

eng

Publicador

CANADIAN MATHEMATICAL SOC

Relação

Canadian Mathematical Bulletin-bulletin Canadien de Mathematiques

Direitos

restrictedAccess

Copyright CANADIAN MATHEMATICAL SOC

Palavras-Chave #GROUP-RINGS #SYMMETRIC ELEMENTS #UNITS #COMMUTATIVITY #IDENTITIES #NILPOTENT #ALGEBRAS #Mathematics
Tipo

article

original article

publishedVersion