Involutions of RA Loops
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2009
|
Resumo |
Let L be an RA loop, that is, a loop whose loop ring over any coefficient ring R is an alternative, but not associative, ring. Let l bar right arrow l(theta) denote an involution on L and extend it linearly to the loop ring RL. An element alpha is an element of RL is symmetric if alpha(theta) = alpha and skew-symmetric if alpha(theta) = -alpha. In this paper, we show that there exists an involution making the symmetric elements of RL commute if and only if the characteristic of R is 2 or theta is the canonical involution on L, and an involution making the skew-symmetric elements of RL commute if and only if the characteristic of R is 2 or 4. Natural Sciences and Engineering Research Council of Canada Natural Sciences and Engineering Research Council of Canada FAPESP[2005/60411-8] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) CNPq[300243/79-0(RN)] Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) |
Identificador |
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, v.52, n.2, p.245-256, 2009 0008-4395 |
Idioma(s) |
eng |
Publicador |
CANADIAN MATHEMATICAL SOC |
Relação |
Canadian Mathematical Bulletin-bulletin Canadien de Mathematiques |
Direitos |
restrictedAccess Copyright CANADIAN MATHEMATICAL SOC |
Palavras-Chave | #GROUP-RINGS #SYMMETRIC ELEMENTS #UNITS #COMMUTATIVITY #IDENTITIES #NILPOTENT #ALGEBRAS #Mathematics |
Tipo |
article original article publishedVersion |