Involutions and free pairs of bicyclic units in integral group rings


Autoria(s): GONCALVES, J. Z.; PASSMAN, D. S.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2010

Resumo

If * : G -> G is an involution on the finite group G, then * extends to an involution on the integral group ring Z[G] . In this paper, we consider whether bicyclic units u is an element of Z[G] exist with the property that the group < u, u*> generated by u and u* is free on the two generators. If this occurs, we say that (u, u*)is a free bicyclic pair. It turns out that the existence of u depends strongly upon the structure of G and on the nature of the involution. One positive result here is that if G is a nonabelian group with all Sylow subgroups abelian, then for any involution *, Z[G] contains a free bicyclic pair.

CNPq[303.756/82-5]

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Fapesp-Brazil, Proj. Tematico[00/07.291-0]

NSA

NSA[144-LQ65]

Identificador

JOURNAL OF GROUP THEORY, v.13, n.5, p.721-742, 2010

1433-5883

http://producao.usp.br/handle/BDPI/30714

10.1515/JGT.2010.019

http://dx.doi.org/10.1515/JGT.2010.019

Idioma(s)

eng

Publicador

WALTER DE GRUYTER & CO

Relação

Journal of Group Theory

Direitos

closedAccess

Copyright WALTER DE GRUYTER & CO

Palavras-Chave #FREE SUBGROUPS #LINEAR-GROUPS #Mathematics
Tipo

article

original article

publishedVersion