Involutions and free pairs of bicyclic units in integral group rings
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2010
|
Resumo |
If * : G -> G is an involution on the finite group G, then * extends to an involution on the integral group ring Z[G] . In this paper, we consider whether bicyclic units u is an element of Z[G] exist with the property that the group < u, u*> generated by u and u* is free on the two generators. If this occurs, we say that (u, u*)is a free bicyclic pair. It turns out that the existence of u depends strongly upon the structure of G and on the nature of the involution. One positive result here is that if G is a nonabelian group with all Sylow subgroups abelian, then for any involution *, Z[G] contains a free bicyclic pair. CNPq[303.756/82-5] Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Fapesp-Brazil, Proj. Tematico[00/07.291-0] NSA NSA[144-LQ65] |
Identificador |
JOURNAL OF GROUP THEORY, v.13, n.5, p.721-742, 2010 1433-5883 http://producao.usp.br/handle/BDPI/30714 10.1515/JGT.2010.019 |
Idioma(s) |
eng |
Publicador |
WALTER DE GRUYTER & CO |
Relação |
Journal of Group Theory |
Direitos |
closedAccess Copyright WALTER DE GRUYTER & CO |
Palavras-Chave | #FREE SUBGROUPS #LINEAR-GROUPS #Mathematics |
Tipo |
article original article publishedVersion |