1000 resultados para ECR plasma
Resumo:
Yttrium oxide (Y(2)O(3)) thin films were deposited by microwave electron cyclotron resonance (ECR) plasma assisted metal organic chemical vapour deposition (MOCVD) process using indigenously developed metal organic precursors Yttrium 2,7,7-trimethyl-3,5-octanedionates, commonly known as Y(tod)(3) which were synthesized by an ultrasound method. A series of thin films were deposited by varying the oxygen flow rate from 1-9 sccm, keeping all other parameters constant. The deposited coatings were characterized by X-ray photoelectron spectroscopy, glancing angle X-ray diffraction and infrared spectroscopy. Thickness and roughness for the films were measured by stylus profilometry. Optical properties of the coatings were studied by the spectroscopic ellipsometry. Hardness and elastic modulus of the films were measured by nanoindentation technique. Being that microwave ECR CVD process is operating-pressure-sensitive, optimum oxygen activity is very essential for a fixed flow rate of precursor, in order to get a single phase cubic yttrium oxide in the films. To the best of our knowledge, this is the first effort that describes the use of Y(tod)(3) precursor for deposition of Y(2)O(3) films using plasma assisted CVD process.
Resumo:
To heteroepitaxally grow the crystalline cubic-GaN (c-GaN) film on the substrates with large lattice mismatch is basically important for fabricating the blue or ultraviolet laser diodes based on cubic group III nitride materials. We have obtained the crystalline c-GaN film and the heteroepitaxial interface between c-Gan and GaAs (001) substrate by the ECR Plasma-Assisted Metal Organic Chemical Vapor Deposition (PA-MOCVD) under low-pressure and low-temperature (similar to600degreesC) on a homemade ECR-plasma Semiconductor Processing Device (ESPD). In order to decrease the growth temperature, the ECR plasma source was adopted as the activated nitrogen source, therefore the working pressure of MOCVD was decreased down to the region less than 1 Pa. To eliminate the damages from energetic ions of current plasma source, a Multi-cusp cavity,coupling ECR Plasma source (MEP) was selected to use in our experiment. To decrease the strain and dislocations induced from the large lattice mismatch between c-GaN and GaAs substrate, the plasma pretreatment procedure i.e., the initial growth technique was investigated The experiment arrangements, the characteristics of plasma and the growth procedure, the characteristics on-GaN film and interface between c-GaN and GaAs(001), and the roles of ECR plasma are described in this contribution.
Resumo:
介绍了电子回旋共振等离子体化学气相沉积(简称ECR plasma CVD)法淀积980nm大功率半导体激光器两端面光学膜的工艺条件,探索了膜系监控的方法和优越性,讨论了这种淀积方法的优点和淀积的光学膜的优良特性。
Resumo:
于2010-11-23批量导入
Resumo:
用人工神经网络方法对电子回旋共振等离子法化学气相沉积(ECR Plasma CVD)镀膜工艺建立了一个介质膜折射率n关于气流配比Q(N_2)/Q(SiH_4)和Q(Q_2)/Q(SiH_4)的数学模型。在给定气流配比Q(N_2)/Q(SiH_4)和Q(O_2)/Q(SiH_4)时模型预测的成膜折射率与实验值符合得很好。
Resumo:
电子回旋共振等离子体化学气相淀积(ECR Plasma CVD)法淀积介质膜技术是制备性能优良的光电子器件光学膜和电介质膜的重要手段之一。该文报道了ECR Plamsa CVD法淀积介质膜的工艺以及介质膜的特性等。
Resumo:
介绍了电子回旋共振等离子体化学气相沉积(简称ECR Plasma CVD)法淀积808nm大功率半导体激光器两端面光学膜的工艺,给出工艺条件,探索了膜系监控的方法和优越性,讨论了这种淀积方法的优点和淀积的光学膜的优良特性。
Resumo:
To investigate the hot electrons in highly charged electron cyclotron resonance (ECR) plasma, Bremsstrahlung radiations were measured on two ECR ion sources at the Institute of Modern Physics. Used as a comparative index of the mean energy of the hot electrons, a spectral temperature, Tspe, is derived through a linear fitting of the spectra in a semi-logarithmic representation. The influences of the external source parameters, especially the magnetic configuration, on the hot electrons are studied systematically. This study has experimentally demonstrated the importance of high microwave frequency and high magnetic field in the electron resonance heating to produce a high density of hot electrons, which is consistent with the empirical ECR scaling laws. The experimental results have again shown that a good compromise is needed between the ion extraction and the plasma confinement for an efficient production of highly charged ion beams. In addition, this investigation has shown that the correlation between the mean energy of the hot electrons and the magnetic field gradient at the ECR is well in agreement with the theoretical models.中文摘要:ECR(电子回旋共振)离子源是产生稳定的强流多电荷态离子束流最有效装置。全永磁 ECR 离子源因其独特的特点为很多中小型多电荷态离子束流实验平台与离子注入机等系统所采用,为后者产生重复性好、稳定性强的多电荷态离子束流。本文着重论述了中国科学院近代物理研究所研制的几台全永磁多电荷态ECR离子源及其特性与典型性能,如能产生强流高电荷态离子束流的高性能全永磁离子源LAPECR2,能产生强流中低电荷态离子束流的LAPECR1,能产生多电荷态重金属离子束流的LAPECR1-M等。这些性能稳定的离子源为提高近代物理研究所相关试验平台的性能提供了关键的束流品质保障。
Resumo:
In order to develop the ultra-large scale integration(ULSI), low pressure and high density plasma apparatus are required for etching and deposit of thin films. To understand critical parameters such as the pressure, temperature, electrostatic potential and energy distribution of ions impacting on the wafer, it is necessary to understand how these parameters are influenced by the power input and neutral gas pressure. In the present work, a 2-D hybrid electron fluid-particle ion model has been developed to simulate one of the high density plasma sources-an Electron Cyclotron Resonance (ECR) plasma system with various pressures and power inputs in a non-uniform magnetic field. By means of numerical simulation, the energy distributions of argon ion impacting on the wafer are obtained and the plasma density, electron temperature and plasma electrostatic potential are plotted in 3-D. It is concluded that the plasma density depends mainly on both the power input and neutral gas pressure. However, the plasma potential and electron temperature can hardly be affected by the power input, they seem to be primarily dependent on the neutral gas pressure. The comparison shows that the simulation results are qualitatively in good agreement with the experiment measurements.
Resumo:
Titanium dioxide thin films with a rutile crystallinite size around 20 nm were fabricated by pulsed laser deposition (PLD) aided with an electron cyclotron resonance (ECR) plasma. With annealing treatment, the crystal size of the rutile crystallinite increased to 100 nm. The apatite-forming ability of the films as deposited and after annealing was investigated in a kind of simulated body fluid with ion concentrations nearly equal to those of human blood plasma. The results indicate that ECR aided PLD is an effective way both to fabricate bioactive titanium dioxide thin films and to optimize the bioactivity of titanium dioxide, with both crystal size and defects of the film taken into account.
Resumo:
Carbon nanosheets (CNSs) have been synthesized by electron cyclotron resonance (ECR) plasma enhanced chemical vapor deposition (PECVD) using a mixture of acetylene and argon gases on copper foil as the substrate. Micrometer-wide carbon sheets consisting of several atomic layers thick graphene sheets have been synthesized by controlled decomposition of carbon radicals in ECR-PECVD. Raman spectroscopy of these films revealed characteristics of a disordered graphitic sheet. Thick folded carbon-sheets and a semi transparent freestanding CNSs have been observed by scanning electron microscopy. This is a promising technique to synthesize free standing CNSs and can be used in the fabrication of nanoelecronic devices in future. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In order to diagnose the electron cyclotron resonance (ECR) plasma, electron bremsstrahlung spectra were measured by a HPGe detector on Lanzhou ECR Ion Source No. 3 at IMP. The ion source was operated with argon under various working conditions, including different microwave power, mixing gas, extraction high voltage (HV), and so on. Some of the measured spectra are presented in this article. The dependence of energetic electron population on mixing gas and extraction HV is also described. Additionally, we are looking forward to further measurements on SECRAL (Superconducting ECR Ion Source with Advanced design at Lanzhou).
Resumo:
A 320 kV high voltage (HV) platform has been constructed at Institute of Modern Physics (IMP) to satisfy the increasing requirements of experimental studies in some heavy ion associated directions. A high charge state all-permanent magnet ECRIS-LAPECR2 has been designed and fabricated to provide intense multiple charge state ion beams (such as 1000 e mu A O6+, 16.7 e mu A Ar14+, 24 e mu A Xe27+, etc.) for the HV platform. LAPECR2 has a dimension of 0 650 mm x 560 mm. The powerful 3D magnetic confinement to the ECR plasma and the optimum designed magnetic field for the operation at 14.5 GHz makes it possible to obtain very good performances from this source. After a brief introduction of the ECRIS and accelerator development at IMP, the conceptual design of LAPECR2 source is presented. The first test results of this all-permanent magnet ECRIS are given in this paper.
Resumo:
本论文对电子回旋共振(ECR)等离子体发出的轫致辐射谱和极紫外光做了系统的实验研究,并对ECR等离子体的工作机制及新的应用前景进行了探索。 在ECR等离子体中,热电子对于离子的形成、约束以及整个等离子体的能量平衡具有重要意义,而由电子发出的轫致辐射谱则包含了电子的能量、密度等信息,因此,测量等离子体发出的轫致辐射谱作为一种非侵入式的诊断方式,成为等离子体诊断的有力手段。为了研究ECR等离子体中热电子这个重要组成部分,我们对三台高电荷态ECR离子源的轫致辐射谱进行了系统测量,并通过对实验谱的拟合得到一个代表等热电子平均能量的参量——光谱温度Tspe。通过测量不同工作参数下(例如微波频率、功率,约束磁场,掺气,负偏压等)等离子体的轫致辐射谱,深入研究了ECR离子源的这些工作参数对热电子能量及密度的影响,并对ECR等离子体中与电子加热及等离子体约束相关的一些物理问题进行了探索性的研究和讨论,在此基础上,对一些已在ECR离子源界得到广泛应用但其物理机制尚不十分清晰的经验性规律及技巧(如Scaling laws,掺气效应,负偏压效应等),做出了新的解释。其中的创新点有:通过对ECR等离子体轫致辐射谱的测量,首次从电子加热的角度诠释了在ECR源领域得到普遍认可的有关约束磁场的Scaling laws;首次实验观察到在磁场分量Blast≈Bext时,离子源的约束和引出之间的关系达到最佳,而当Bext小于Blast较多时,等离子体的约束将遭到较严重的破坏;实验观察到热电子能量随共振区磁场梯度的减弱而提高,并分别从单粒子轨道模型和电磁波在等离子体中的传播两个角度对这一现象进行了分析;基于实验现象,从抑制等离子体不稳定性的角度出发对掺气效应做出了新的解释。 由于在未来光刻及显微成像等领域的广泛应用前景,极紫外(EUV)和软X射线光源目前是国际上的研究热点,而ECR等离子体作为一种高离化态的等离子体,为EUV和软X射线光源的发展提供了一条新思路。为了研究ECR等离子体作为EUV光源的可行性,我们对其发出的波长在13.5nm附近的窄带宽EUV光功率进行了初步测量,在超导ECR离子源——SECRAL上,测量到了超过2W的窄带宽EUV光功率(2π sr),这是目前国际上利用ECR等离子体产生并测量到的EUV光功率中的最好结果,这一结果证明了ECR等离子体作为EUV光源的潜力,但在发射强度、转化效率等方面还需做出很大的改进,本论文给出了相应的研究发展思路