187 resultados para Attractors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Business organisations are excellent representations of what in physics and mathematics are designated "chaotic" systems. Because a culture of innovation will be vital for organisational survival in the 21st century, the present paper proposes that viewing organisations in terms of "complexity theory" may assist leaders in fine-tuning managerial philosophies that provide orderly management emphasizing stability within a culture of organised chaos, for it is on the "boundary of chaos" that the greatest creativity occurs. It is argued that 21st century companies, as chaotic social systems, will no longer be effectively managed by rigid objectives (MBO) nor by instructions (MBI). Their capacity for self-organisation will be derived essentially from how their members accept a shared set of values or principles for action (MBV). Complexity theory deals with systems that show complex structures in time or space, often hiding simple deterministic rules. This theory holds that once these rules are found, it is possible to make effective predictions and even to control the apparent complexity. The state of chaos that self-organises, thanks to the appearance of the "strange attractor", is the ideal basis for creativity and innovation in the company. In this self-organised state of chaos, members are not confined to narrow roles, and gradually develop their capacity for differentiation and relationships, growing continuously toward their maximum potential contribution to the efficiency of the organisation. In this way, values act as organisers or "attractors" of disorder, which in the theory of chaos are equations represented by unusually regular geometric configurations that predict the long-term behaviour of complex systems. In business organisations (as in all kinds of social systems) the starting principles end up as the final principles in the long term. An attractor is a model representation of the behavioral results of a system. The attractor is not a force of attraction or a goal-oriented presence in the system; it simply depicts where the system is headed based on its rules of motion. Thus, in a culture that cultivates or shares values of autonomy, responsibility, independence, innovation, creativity, and proaction, the risk of short-term chaos is mitigated by an overall long-term sense of direction. A more suitable approach to manage the internal and external complexities that organisations are currently confronting is to alter their dominant culture under the principles of MBV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Business organisations are excellent representations of what in physics and mathematics are designated "chaotic" systems. Because a culture of innovation will be vital for organisational survival in the 21st century, the present paper proposes that viewing organisations in terms of "complexity theory" may assist leaders in fine-tuning managerial philosophies that provide orderly management emphasizing stability within a culture of organised chaos, for it is on the "boundary of chaos" that the greatest creativity occurs. It is argued that 21st century companies, as chaotic social systems, will no longer be effectively managed by rigid objectives (MBO) nor by instructions (MBI). Their capacity for self-organisation will be derived essentially from how their members accept a shared set of values or principles for action (MBV). Complexity theory deals with systems that show complex structures in time or space, often hiding simple deterministic rules. This theory holds that once these rules are found, it is possible to make effective predictions and even to control the apparent complexity. The state of chaos that self-organises, thanks to the appearance of the "strange attractor", is the ideal basis for creativity and innovation in the company. In this self-organised state of chaos, members are not confined to narrow roles, and gradually develop their capacity for differentiation and relationships, growing continuously toward their maximum potential contribution to the efficiency of the organisation. In this way, values act as organisers or "attractors" of disorder, which in the theory of chaos are equations represented by unusually regular geometric configurations that predict the long-term behaviour of complex systems. In business organisations (as in all kinds of social systems) the starting principles end up as the final principles in the long term. An attractor is a model representation of the behavioral results of a system. The attractor is not a force of attraction or a goal-oriented presence in the system; it simply depicts where the system is headed based on its rules of motion. Thus, in a culture that cultivates or shares values of autonomy, responsibility, independence, innovation, creativity, and proaction, the risk of short-term chaos is mitigated by an overall long-term sense of direction. A more suitable approach to manage the internal and external complexities that organisations are currently confronting is to alter their dominant culture under the principles of MBV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the existence of strange nonchaotic attractors (SNA) in the family of Harper maps. We prove that for a set of parameters of positive measure, the map possesses a SNA. However, the set is nowhere dense. By changing the parameter arbitrarily small amounts, the attractor is a smooth curve and not a SNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chaotic systems, when used to drive copies of themselves (or parts of themselves) may induce interesting behaviors in the driven system. In case the later exhibits invariance under amplification or translation, they may show amplification (reduction), or displacement of the attractor. It is shown how the behavior to be obtained is implied by the symmetries involved. Two explicit examples are studied to show how these phenomena manifest themselves under perfect and imperfect coupling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multifractal dimension of chaotic attractors has been studied in a weakly coupled superlattice driven by an incommensurate sinusoidal voltage as a function of the driving voltage amplitude. The derived multifractal dimension for the observed bifurcation sequence shows different characteristics for chaotic, quasiperiodic, and frequency-locked attractors. In the chaotic regime, strange attractors are observed. Even in the quasiperiodic regime, attractors with a certain degree of strangeness may exist. From the observed multifractal dimensions, the deterministic nature of the chaotic oscillations is clearly identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the analytical investigations on a logistic map with a discontinuity at the centre. An explanation for the bifurcation phenomenon in discontinuous systems is presented. We establish that whenever the elements of an n-cycle (n > 1) approach the discontinuities of the nth iterate of the map, a bifurcation other than the usual period-doubling one takes place. The periods of the cycles decrease in an arithmetic progression, as the control parameter is varied. The system also shows the presence of multiple attractors. Our results are verified by numerical experiments as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theory of deterministic chaos is used to study the three rings A, B, and C of Saturn and the French and Cassini divisions in between them. The data set comprises Voyager photopolarimeter measurements. The existence of spatially distributed strange attractors is shown, implying that the system is open, dissipative, nonequilibrium, and non-Markovian in character.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multifractal dimension of chaotic attractors has been studied in a weakly coupled superlattice driven by an incommensurate sinusoidal voltage as a function of the driving voltage amplitude. The derived multifractal dimension for the observed bifurcation sequence shows different characteristics for chaotic, quasiperiodic, and frequency-locked attractors. In the chaotic regime, strange attractors are observed. Even in the quasiperiodic regime, attractors with a certain degree of strangeness may exist. From the observed multifractal dimensions, the deterministic nature of the chaotic oscillations is clearly identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We provide bounds on the upper box-counting dimension of negatively invariant subsets of Banach spaces, a problem that is easily reduced to covering the image of the unit ball under a linear map by a collection of balls of smaller radius. As an application of the abstract theory we show that the global attractors of a very broad class of parabolic partial differential equations (semilinear equations in Banach spaces) are finite-dimensional. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the existence of pullback attractors for evolution processes. Our aim is to provide results that extend the following results for autonomous evolution processes (semigroups) (i) An autonomous evolution process which is bounded, dissipative and asymptotically compact has a global attractor. (ii) An autonomous evolution process which is bounded, point dissipative and asymptotically compact has a global attractor. The extension of such results requires the introduction of new concepts and brings up some important differences between the asymptotic properties of autonomous and non-autonomous evolution processes. An application to damped wave problem with non-autonomous damping is considered. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the lower semicontinuity of attractors for semilinear non-autonomous differential equations in Banach spaces. We require the unperturbed attractor to be given as the union of unstable manifolds of time-dependent hyperbolic solutions, generalizing previous results valid only for gradient-like systems in which the hyperbolic solutions are equilibria. The tools employed are a study of the continuity of the local unstable manifolds of the hyperbolic solutions and results on the continuity of the exponential dichotomy of the linearization around each of these solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we give general results on the continuity of pullback attractors for nonlinear evolution processes. We then revisit results of [D. Li, P.E. Kloeden, Equi-attraction and the continuous dependence of pullback attractors on parameters, Stoch. Dyn. 4 (3) (2004) 373-384] which show that, under certain conditions, continuity is equivalent to uniformity of attraction over a range of parameters (""equi-attraction""): we are able to simplify their proofs and weaken the conditions required for this equivalence to hold. Generalizing a classical autonomous result [A.V. Babin, M.I. Vishik, Attractors of Evolution Equations, North Holland, Amsterdam, 1992] we give bounds on the rate of convergence of attractors when the family is uniformly exponentially attracting. To apply these results in a more concrete situation we show that a non-autonomous regular perturbation of a gradient-like system produces a family of pullback attractors that are uniformly exponentially attracting: these attractors are therefore continuous, and we can give an explicit bound on the distance between members of this family. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we conclude the analysis started in [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains I. Continuity of the set of equilibria, J. Differential Equations 231 (2006) 551-597] and continued in [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains II. The limiting problem, J. Differential Equations 247 (1) (2009) 174-202 (this issue)] concerning the behavior of the asymptotic dynamics of a dissipative reaction-diffusion equation in a dumbbell domain as the channel shrinks to a line segment. In [J.M. Arrieta, AN Carvalho. G. Lozada-Cruz, Dynamics in dumbbell domains I. Continuity of the set of equilibria, J. Differential Equations 231 (2006) 551-597], we have established an appropriate functional analytic framework to address this problem and we have shown the continuity of the set of equilibria. In [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz. Dynamics in dumbbell domains II. The limiting problem, J. Differential Equations 247 (1) (2009) 174-202 (this issue)], we have analyzed the behavior of the limiting problem. In this paper we show that the attractors are Upper semicontinuous and, moreover, if all equilibria of the limiting problem are hyperbolic, then they are lower semicontinuous and therefore, continuous. The continuity is obtained in L(p) and H(1) norms. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study the continuity of asymptotics of semilinear parabolic problems of the form u(t) - div(p(x)del u) + lambda u =f(u) in a bounded smooth domain ohm subset of R `` with Dirichlet boundary conditions when the diffusion coefficient p becomes large in a subregion ohm(0) which is interior to the physical domain ohm. We prove, under suitable assumptions, that the family of attractors behave upper and lower semicontinuously as the diffusion blows up in ohm(0). (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we prove that the global attractors for the flow of the equation partial derivative m(r, t)/partial derivative t = -m(r, t) + g(beta J * m(r, t) + beta h), h, beta >= 0, are continuous with respect to the parameters h and beta if one assumes a property implying normal hyperbolicity for its (families of) equilibria.