486 resultados para alkaloids
Resumo:
Fungi isolated from marine organisms have been shown to produce several interesting secondary metabolites with important biological activities. Such chemical diversity may be associated to environmental stress conditions and may represent an important source of NCE for bioprospection. Quinolactins belong to a rare fungi-alkaloid class with a unique N-methyl-quinolone moiety fused to a lactam ring and present several bioactivities1. Fungi strain Dm1 was isolated from red alga Dichotomaria marginata, collected from Brazil SE coast, and was grown in sterile rice solid media at 26oC 2, which was then extracted with MeOH. The MeCN fr. from the MeOH extract was chromatographed over Sephadex LH-20 and fr. 4 afforded quinolactin (QL) alkaloids B1, B2 and A, whereas fr. 5 afforded quinolactin D1 after purification by HPLC-DAD. Structural determination of pure compounds was based on HRMS, UV, and NMR spectral analyses, in addition to comparison with literature data and Antimarin® databank. UV data indicated the presence of similar chromophores with λmax at ca. 247 and 320nm. HRMS and tandem MS analyses using both negative and positive ion modes for the isolated compounds indicated their molecular formula and structural features, as for QL B1: C15H16O2N2 [M+H 257], which showed one fragment at m/z 214 [-CHNO]; QL B2: C15H16O3N2 [M+H 273], with product ions at m/z 230 [-CHNO.] and m/z 186 [-C4H9NO.]; for QL A: C16H18N2O2 [M+H 271], which presented one ion at m/z 214, due to loss of fragment (-C4H9) from the molecular ion; and for QL D1: C16H18N2O3 [M+H 287], with product ions at m/z 186 [-CHNO] and m/z 230 [-C4H9]. Such data suggested fragmentation proposals, e.g. for Quinolactin B1 (Fig. 1), which confirmed the structures of the isolated quinolactins, and may represent an important contribution for the sustainable exploration of marine biodiversity.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Phytochemical examination of Aristolochia gigantea led to the isolation of 10 alkaloids, belonging to the new 8-benzylberbine type. Eight of them occurred as glucosides. The structural assignments were based on analysis of physical and spectral data. © 1992.
Resumo:
Bark of Ocotea pulchella contains, besides 1-(p-methoxybenzoyl)-6,7-methylenedioxyisoquinoline, 1-(hydroxy-p-methoxybenzyl)-6,7-methylenedioxyisoquinoline and their 1,2-dihydro-derivatives, 11-eudesmen-4α-ol and 4-furanoeudesmen-6-one. © 1993.
Resumo:
Background: Ayahuasca is a psychoactive plant beverage originally used by indigenous people throughout the Amazon Basin, long before its modern use by syncretic religious groups established in Brazil, the USA and European countries. The objective of this study was to develop a method for quantification of dimethyltryptamine and beta-carbolines in human plasma samples. Results: The analytes were extracted by means of C18 cartridges and injected into LC-MS/MS, operated in positive ion mode and multiple reaction monitoring. The LOQs obtained for all analytes were below 0.5 ng/ml. By using the weighted least squares linear regression, the accuracy of the analytical method was improved at the lower end of the calibration curve (from 0.5 to 100 ng/ml; r(2)> 0.98). Conclusion: The method proved to be simple, rapid and useful to estimate administered doses for further pharmacological and toxicological investigations of ayahuasca exposure.
Resumo:
As part of an ongoing research project on Senna and Cassia species, five new pyridine alkaloids, namely, 12'-hydroxy-7'-multijuguinol (1), 12'-hydroxy-8'-multijuguinol (2), methyl multijuguinate (3), 7'-multijuguinol (4), and 8'-multijuguinol (5), were isolated from the leaves of Senna multijuga (syn. Cassia multijuga). Their structures were elucidated on the basis of spectroscopic data analysis. Mass spectrometry was used for confirmation of the positions of the hydroxy groups in the side-chains of 1, 2, 4, and 5. All compounds exhibited weak in vitro acetylcholinesterase inhibitory activity as compared with the standard compound physostigmine.
Resumo:
A versatile and concise approach for the stereoselective synthesis of mono-, di-, and trihydroxylated indolizidines is presented in four to six steps from Cbz-prolinal and a diazophosphonate. The key steps involved a Wolff rearrangement, followed by a stereoselective dihydroxylation/epoxidation reaction, from an alpha,beta-unsaturated diazoketone. The strategy also permits extension to the synthesis of many natural hydroxylated indolizidine alkaloids as demonstrated in the formal synthesis of pumiliotoxin 251D.
Resumo:
Solanum lycocarpum (Solanaceae), a Brazilian medicinal plant known as "wolf fruit," contains about 1.5% of glycoalkaloids in its dried fruits, consisting mainly of solamargine and solasonine. The present work reports the obtainment of the alkaloidic extract of the S. lycocarpum fruit by acid-base extraction and the isolation of the major alkaloid heterosides by chromatographic means, as well as the evaluation of their in vitro schistosomicidal activities. The in vitro schistosomicidal activities of the alkaloidic extract of S. lycocarpum fruits and its isolated steroidal alkaloids were undertaken against adult worms of Schistosoma mansoni. The alkaloidic extract (20, 32, and 50 mu g mL(-1)), solasonine (50 mu M), solamargine (32 and 50 mu M), and equimolar mixture of glycoalkaloids (20, 32, and 50 mu M) lead to the separation of all couple worms and extensive disruption on their teguments, such as sloughing, as well as their deaths within 24 h of incubation. In addition, the alkaloidic extract (10 and 15 mu g mL(-1)), solasonine (50 mu M), solamargine (10, 15, and 20 mu M), and equimolar mixtures of glycoalkaloids (10 and 15 mu M) reduced the development of eggs produced by the adult worms. Solamargine, containing the sugar chain moiety chacotriose, was more active than the solasonine, which contains solatriose sugar chain moiety. A synergistic effect was also observed for a mixture of solamargine and solasonine. Therefore, the alkaloidic extract of S. lycocarpum, and its major components, solamargine and solasonine, showed promising schistosomicidal activity.
Resumo:
The red-belly toads (Melanophryniscus) of southern South America secrete defensive alkaloids from dermal granular glands. To date, all information on Melanophryniscus alkaloids has been obtained by extraction from either skins or whole organisms; however, in other amphibians, tetrodotoxins, samandarines, and bufadienolides have been detected in both skin and other organs, which raise the possibility that lipophilic alkaloids may occur in non-integumentary tissues in Melanophryniscus as well. To test this hypothesis, we studied the distribution of alkaloids in the skin, skeletal muscle, liver, and mature oocytes of the red-belly toad M. simplex from three localities in southern Brazil. Gas chromatography and mass spectrometry of skin extracts from 11 individuals of M. simplex resulted in the detection of 47 alkaloids (including isomers), 9 unclassified and 38 from 12 known structural classes. Each alkaloid that was present in the skin of an individual was also present in the same relative proportion in that individual's skeletal muscle, liver, and oocytes. The most abundant and widely distributed alkaloids were the pumiliotoxins 251D, 267C, and 323A, 5,8-disubstituted indolizidines 207A and 223D, 5,6,8-trisubstituted indolizidine 231B, 3,5-disubstituted pyrrolizidines cis-223B and cis- and trans-251K, and izidine 211C. We report the first record of piperidines in Melanophryniscus, bringing the total number of alkaloid classes detected in this genus to 16. Alkaloid composition differed significantly among the three study sites. The functional significance of defensive chemicals in non-integumentary tissues is unknown.
Resumo:
Conchocarpus fontanesianus (A. St.-Hill.) Kallunki & Pirani, Rutaceae, popularly known as pitaguará, is a native and endemic tree from São Paulo and Rio de Janeiro States, Brazil. Based in the information that anticholinesterasic derivatives could act as new prototypes to treatment of Alzheimer disease, this work describes the fractionation guided by evaluation of the anticholinesterase activity of the ethanolic stems extract from C. fontanesianus. This procedure afforded the alkaloids dictamnine (1), γ-fagarine (2), skimianine (3), and 2-phenyl-1-methyl-4-quinolone (4), as well as the coumarin marmesin (5).
Resumo:
In vitro evaluation of alkaloidal fractions of twigs, barks and leaves from two Unonopsis species, Unonopsis guatterioides R.E. Fr. and Unonopsis duckei R.E. Fr., Annonaceae, against promastigote forms of Leishmania amazonensis revealed these species as sources of substances with promising leishmanicidal potential. All alkaloidal fractions from twigs, barks and leaves of U. guatterioides were classified as highly active, with IC50 1.07, 1.90, and 2.79 mg/mL, respectively. Only the alkaloidal fraction from the twigs of U. duckei was classified as inactive.
Resumo:
During the last fifteen years organocatalysis emerged as a powerful tool for the enantioselective functionalization of the most different organic molecules. Both C-C and C-heteroatom bonds can be formed in an enantioselective fashion using many types of catalyst and the field is always growing. Many kind of chiral catalysts have emerged as privileged, but among them Proline, cinchona alkaloids, BINOL, and their derivatives showed to be particularly useful chiral scaffolds. This thesis, after a short presentation of many organocatalysts and activation modes, focuses mainly on cinchona alkaloid derived primary amines and BINOL derived chiral Brønsted acids, describing their properties and applications. Then, in the experimental part, these compounds are used for the catalysis of new transformations. The enantioselective Friedel-Crafts alkylation of cyclic enones with naphthols using cinchona alkaloid derived primary amines as catalysts is presented and discussed. The results of this work were very good and this resulted also in a publication. The same catalysts are then used to accomplish the enantioselective addition of indoles to cyclic enones. Many catalysts in combination with many acids as co-catalysts were tried and the reaction was fully studied. Selective N-alkylation was obtained in many cases, in combination with quite good to good enantioselectivities. Also other kind of catalysis were tried for this reaction, with interesting results. Another aza-Michael reaction between OH-free hydroxylamines and nitrostyrene using cinchona alkaloid derived thioureas is briefly discussed. Then our attention focused on Brønsted acid catalyzed transformations. With this regard, the Prins cyclization, a reaction never accomplished in an enantioselective fashion until now, is presented and developed. The results obtained are promising. In the last part of this thesis the work carried out abroad is presented. In Prof. Rueping laboratories, an enantioselective Nazarov cyclization using cooperative catalysis and the enantioselective desymmetrization of meso-hydrobenzoin catalyzed by Brønsted acid were studied.