170 resultados para Torus
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
tabula tabular tachyauxesis tachyblastic tachygen tachygenesis tachytelic tactic tactile tactoreceptors taenia taeniate taenidium taenioglossate tagma tagmata tagmosis tail tailfan Takakura's talon talus tandem tangent tangoreceptor tanylobous tapetal tapetum tapinoma-odor Tardigrada tardigrades tarsal tarsation tarsite tarsomere tarsungulus tarsus taste tautonomy tautonym taxa taxes taxis taxis taxodont taxometrics taxon taxonomic taxonomist taxonomy tectiform tectostracum tectum teeth teges tegillum tegmen tegmentum tegula tegular tegulum tegumen tegument tegumentary tela telaform telamon telegonic teleiochrysalis telenchium teleoconch teleodont teleology teleotrocha telepod telescope telescopic teletrophic telioderma teliophan telmophage telocentric telodendria telofemur telogonic telolecithal telomitic telophase telophragma telopod telopodite telorhabdions telosonic telostome telosynapsis telosyndesis telotarsus telotaxis telotroch telson template temporal tenacipeds tenaculum tenent teneral tensor tentacle tentacular tentaculocyst tentaculozooid tentilla tentorial tentorium tenuous teratocyte teratogen teratogenesis teratogyne teratology terebella terebra terebrant terebrate teres terete terga tergal tergite tergolateral tergopleural tergopore tergum tergum termen terminal terminalia termitarium termitophile terranes terrestrial terricolous territory tertiary tertibrach tertibrachial tessellate test testaceology testaceous test-cross testes testis testisac testudinate tetanus tetany tetractinal tetractine tetrad tetradelphic tetramerous tetramorphic tetraploid tetrapod tetrapterous tetrasomic tetrathyridial tetrathyridium tetraxon tetraxonid thalassophilous thallus thamnophilous thanatocoenosis thanatosis theca thecae thecal thecate thelycum thelygenesis thelygenous thelyotokous thelyotoky theory thermocline thermophile thermophobe thermoreceptor thermotaxis thickness thigmotactic thigmotaxis thigmotropism third-form thoraces thoracic thoracomere thoracopod(ite) thorax thoraxes thread thylacium thylacogen thyridial thyridium thyroid thysanuriform tibia tibial tibiotarsal tibiotarsus Tiedemann's tiled timbal tinctorial tine tissue tissue titilla titillae titillator tocopherol tocospermal tocospermia tocostome tokostome tomentose tomentum Tomosvary tone tonic tonofibrillae tonus topochemical topogamodeme topomorph topomorphic toponym topotype tori torma tormogen tornote tornus torose torpid torqueate torsion tortuose torulose torus totipotent totomount toxa toxicognath toxicology toxin toxinosis toxoglossate toxoid trabecula trabeculate trabeculated trachea tracheae tracheal tracheate tracheoblast tracheolar tracheoles trachychromatic tract Tragardh's tragus transad transcoxa transcurrent transect transection transformation transient transitional translocation translucent transmission transposed transscutal transstadial transtilla transverse trapeziform trapezium trapezoid trema tremata Trematoda trenchant trepan triact triactinal triad triaene triage triangle triangular triangulate triaulic triaxial triaxon tribe tribocytic trichite trichobothrium trichobranchia trichobranchiate trichocerous trichodes trichodeum trichodragmata trichogen trichoid trichomes trichophore trichopore trichosors trichostichal trichotomous trichroism tricolumella tricomes tricostate tricrepid tricuspid tricuspidate tridactyl trident tridentate trifid trifurcate triglycerides trignathan trigonal trigoneutism trilabiate trilateral trilobate trilocular trimorphic trimorphism Trinominal triordinal tripartite tripectinate triplet triploblastic triploid triquetral triquetrous triradiate triradiates tritocerebral tritocerebrum tritocerebrum tritonymph tritosternum triturate triungulin triungulinid trivial trivium trivoltine trixenic troch trochal trochalopodous trochantellus trochanter trochanteral trochantin trochi trochiform trochlea trocholophous trochophore trochosphere trochus troglobiont troglodytic troglophile trogloxene tropeic trophal trophallactic trophallaxis trophamnion trophi trophic trophidium trophobiont trophobiont trophobiosis trophobiotic trophocytes trophodisc trophogeny trophoporic trophorhinium trophosome trophotaxis trophothylax trophozooid trophus tropis tropism tropotaxis trumpet truncate truncation trunk trypsin tryptic tryptophan tryptophane T-tubule tube tube-feet tubercle tubercula tuberculate tuberculose tuberiferous tubicolous tubifacient tubule tubulus tubus tuft Tullgren tumefaction tumescence tumid tumulus tunic tunica tunicary tunicate turbinate turgid turreted turriculate tychoparthenogenesis tylasters tylenchoid tyli tyloid tyloides tylosis tylostyle tylote tylus tymbal tympanal tympanal tympanic tympanum Tyndall type typhlosole typologist typolysis typostasis
Resumo:
This work deals with global solvability of a class of complex vector fields of the form L = partial derivative/partial derivative t + (a(x, t)+ ib(x, t))partial derivative/partial derivative x, where a and b are real-valued C-infinity functions, defined on the cylinder Omega = R x S-1. Relatively compact (Sussmann) orbits are allowed. The connection with Malgrange's notion of L-convexity for supports is investigated. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
This work deals with the solvability near the characteristic set Sigma = {0} x S-1 of operators of the form L = partial derivative/partial derivative t+(x(n) a(x)+ ix(m) b(x))partial derivative/partial derivative x, b not equivalent to 0 and a(0) not equal 0, defined on Omega(epsilon) = (-epsilon, epsilon) x S-1, epsilon > 0, where a and b are real-valued smooth functions in (-epsilon, epsilon) and m >= 2n. It is shown that given f belonging to a subspace of finite codimension of C-infinity (Omega(epsilon)) there is a solution u is an element of L-infinity of the equation Lu = f in a neighborhood of Sigma; moreover, the L-infinity regularity is sharp.
Resumo:
We show that if N, an open connected n-manifold with finitely generated fundamental group, is C-2 foliated by closed planes, then pi(1)(N) is a free group. This implies that if pi(1)(N) has an abelian subgroup of rank greater than one, then F has at least a nonclosed leaf. Next, we show that if N is three dimensional with fundamental group abelian of rank greater than one, then N is homeomorphic to T-2 x R. Furthermore, in this case we give a complete description of the foliation.
Resumo:
We consider a class of involutive systems of n smooth vector fields on the n + 1 dimensional torus. We obtain a complete characterization for the global solvability of this class in terms of Liouville forms and of the connectedness of all sublevel and superlevel sets of the primitive of a certain 1-form in the minimal covering space.
Resumo:
We present a family of networks whose local interconnection topologies are generated by the root vectors of a semi-simple complex Lie algebra. Cartan classification theorem of those algebras ensures those families of interconnection topologies to be exhaustive. The global arrangement of the network is defined in terms of integer or half-integer weight lattices. The mesh or torus topologies that network millions of processing cores, such as those in the IBM BlueGene series, are the simplest member of that category. The symmetries of the root systems of an algebra, manifested by their Weyl group, lends great convenience for the design and analysis of hardware architecture, algorithms and programs.
Resumo:
Phenomena as reconnection scenarios, periodic-orbit collisions, and primary shearless tori have been recognized as features of nontwist maps. Recently, these phenomena and secondary shearless tori were analytically predicted for generic maps in the neighborhood of the tripling bifurcation of an elliptic fixed point. In this paper, we apply a numerical procedure to find internal rotation number profiles that highlight the creation of periodic orbits within islands of stability by a saddle-center bifurcation that emerges out a secondary shearless torus. In addition to the analytical predictions, our numerical procedure applied to the twist and nontwist standard maps reveals that the atypical secondary shearless torus occurs not only near a tripling bifurcation of the fixed point but also near a quadrupling bifurcation. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4750040]
Resumo:
We consider various problems regarding roots and coincidence points for maps into the Klein bottle . The root problem where the target is and the domain is a compact surface with non-positive Euler characteristic is studied. Results similar to those when the target is the torus are obtained. The Wecken property for coincidences from to is established, and we also obtain the following 1-parameter result. Families which are coincidence free but any homotopy between and , , creates a coincidence with . This is done for any pair of maps such that the Nielsen coincidence number is zero. Finally, we exhibit one such family where is the constant map and if we allow for homotopies of , then we can find a coincidence free pair of homotopies.
Resumo:
Seyfert galaxies are the closest active galactic nuclei. As such, we can use
them to test the physical properties of the entire class of objects. To investigate
their general properties, I took advantage of different methods of data analysis. In
particular I used three different samples of objects, that, despite frequent overlaps,
have been chosen to best tackle different topics: the heterogeneous BeppoS AX
sample was thought to be optimized to test the average hard X-ray (E above 10 keV)
properties of nearby Seyfert galaxies; the X-CfA was thought the be optimized to
compare the properties of low-luminosity sources to the ones of higher luminosity
and, thus, it was also used to test the emission mechanism models; finally, the
XMM–Newton sample was extracted from the X-CfA sample so as to ensure a
truly unbiased and well defined sample of objects to define the average properties
of Seyfert galaxies.
Taking advantage of the broad-band coverage of the BeppoS AX MECS and
PDS instruments (between ~2-100 keV), I infer the average X-ray spectral propertiesof nearby Seyfert galaxies and in particular the photon index (
Resumo:
In den letzten fünf Jahren hat sich mit dem Begriff desspektralen Tripels eine Möglichkeit zur Beschreibungdes an Spinoren gekoppelten Gravitationsfeldes auf(euklidischen) nichtkommutativen Räumen etabliert. Die Dynamik dieses Gravitationsfeldes ist dabei durch diesogenannte spektrale Wirkung, dieSpur einer geeigneten Funktion des Dirac-Operators,bestimmt. Erstaunlicherweise kann man die vollständige Lagrange-Dichtedes (an das Gravitationsfeld gekoppelten) Standardmodellsder Elementarteilchenphysik, also insbesondere auch denmassegebenden Higgs-Sektor, als spektrale Wirkungeines entsprechenden spektralen Tripels ableiten. Diesesspektrale Tripel ist als Produkt des spektralenTripels der (kommutativen) Raumzeit mit einem speziellendiskreten spektralen Tripel gegeben. In der Arbeitwerden solche diskreten spektralen Tripel, die bis vorKurzem neben dem nichtkommutativen Torus die einzigen,bekannten nichtkommutativen Beispiele waren, klassifiziert. Damit kannnun auch untersucht werden, inwiefern sich dasStandardmodell durch diese Eigenschaft gegenüber anderenYang-Mills-Higgs-Theorien auszeichnet. Es zeigt sichallerdings, dasses - trotz mancher Einschränkung - eine sehr große Zahl vonModellen gibt, die mit Hilfe von spektralen Tripelnabgeleitet werden können. Es wäre aber auch denkbar, dass sich das spektrale Tripeldes Standardmodells durch zusätzliche Strukturen,zum Beispiel durch eine darauf ``isometrisch'' wirkendeHopf-Algebra, auszeichnet. In der Arbeit werden, um dieseFrage untersuchen zu können, sogenannte H-symmetrischespektrale Tripel, welche solche Hopf-Isometrien aufweisen,definiert.Dabei ergibt sich auch eine Möglichkeit, neue(H-symmetrische) spektrale Tripel mit Hilfe ihrerzusätzlichen Symmetrienzu konstruieren. Dieser Algorithmus wird an den Beispielender kommutativen Sphäre, deren Spin-Geometrie hier zumersten Mal vollständig in der globalen, algebraischen Sprache der NichtkommutativenGeometrie beschrieben wird, sowie dem nichtkommutativenTorus illustriert.Als Anwendung werden einige neue Beipiele konstruiert. Eswird gezeigt, dass sich für Yang-Mills Higgs-Theorien, diemit Hilfe von H-symmetrischen spektralen Tripeln abgeleitetwerden, aus den zusätzlichen Isometrien Einschränkungen andiefermionischen Massenmatrizen ergeben. Im letzten Abschnitt der Arbeit wird kurz auf dieQuantisierung der spektralen Wirkung für diskrete spektraleTripel eingegangen.Außerdem wird mit dem Begriff des spektralen Quadrupels einKonzept für die nichtkommutative Verallgemeinerungvon lorentzschen Spin-Mannigfaltigkeiten vorgestellt.
Resumo:
In der Nichtkommutativen Geometrie werden Räume und Strukturen durch Algebren beschrieben. Insbesondere werden hierbei klassische Symmetrien durch Hopf-Algebren und Quantengruppen ausgedrückt bzw. verallgemeinert. Wir zeigen in dieser Arbeit, daß der bekannte Quantendoppeltorus, der die Summe aus einem kommutativen und einem nichtkommutativen 2-Torus ist, nur den Spezialfall einer allgemeineren Konstruktion darstellt, die der Summe aus einem kommutativen und mehreren nichtkommutativen n-Tori eine Hopf-Algebren-Struktur zuordnet. Diese Konstruktion führt zur Definition der Nichtkommutativen Multi-Tori. Die Duale dieser Multi-Tori ist eine Kreuzproduktalgebra, die als Quantisierung von Gruppenorbits interpretiert werden kann. Für den Fall von Wurzeln der Eins erhält man wichtige Klassen von endlich-dimensionalen Kac-Algebren, insbesondere die 8-dim. Kac-Paljutkin-Algebra. Ebenfalls für Wurzeln der Eins kann man die Nichtkommutativen Multi-Tori als Hopf-Galois-Erweiterungen des kommutativen Torus interpretieren, wobei die Rolle der typischen Faser von einer endlich-dimensionalen Hopf-Algebra gespielt wird. Der Nichtkommutative 2-Torus besitzt bekanntlich eine u(1)xu(1)-Symmetrie. Wir zeigen, daß er eine größere Quantengruppen-Symmetrie besitzt, die allerdings nicht auf die Spektralen Tripel des Nichtkommutativen Torus fortgesetzt werden kann.
Resumo:
In this thesis I treat various biophysical questions arising in the context of complexed / ”protein-packed” DNA and DNA in confined geometries (like in viruses or toroidal DNA condensates). Using diverse theoretical methods I consider the statistical mechanics as well as the dynamics of DNA under these conditions. In the first part of the thesis (chapter 2) I derive for the first time the single molecule ”equation of state”, i.e. the force-extension relation of a looped DNA (Eq. 2.94) by using the path integral formalism. Generalizing these results I show that the presence of elastic substructures like loops or deflections caused by anchoring boundary conditions (e.g. at the AFM tip or the mica substrate) gives rise to a significant renormalization of the apparent persistence length as extracted from single molecule experiments (Eqs. 2.39 and 2.98). As I show the experimentally observed apparent persistence length reduction by a factor of 10 or more is naturally explained by this theory. In chapter 3 I theoretically consider the thermal motion of nucleosomes along a DNA template. After an extensive analysis of available experimental data and theoretical modelling of two possible mechanisms I conclude that the ”corkscrew-motion” mechanism most consistently explains this biologically important process. In chapter 4 I demonstrate that DNA-spools (architectures in which DNA circumferentially winds on a cylindrical surface, or onto itself) show a remarkable ”kinetic inertness” that protects them from tension-induced disruption on experimentally and biologically relevant timescales (cf. Fig. 4.1 and Eq. 4.18). I show that the underlying model establishes a connection between the seemingly unrelated and previously unexplained force peaks in single molecule nucleosome and DNA-toroid stretching experiments. Finally in chapter 5 I show that toroidally confined DNA (found in viruses, DNAcondensates or sperm chromatin) undergoes a transition to a twisted, highly entangled state provided that the aspect ratio of the underlying torus crosses a certain critical value (cf. Eq. 5.6 and the phase diagram in Fig. 5.4). The presented mechanism could rationalize several experimental mysteries, ranging from entangled and supercoiled toroids released from virus capsids to the unexpectedly short cholesteric pitch in the (toroidaly wound) sperm chromatin. I propose that the ”topological encapsulation” resulting from our model may have some practical implications for the gene-therapeutic DNA delivery process.
Resumo:
This thesis provides efficient and robust algorithms for the computation of the intersection curve between a torus and a simple surface (e.g. a plane, a natural quadric or another torus), based on algebraic and numeric methods. The algebraic part includes the classification of the topological type of the intersection curve and the detection of degenerate situations like embedded conic sections and singularities. Moreover, reference points for each connected intersection curve component are determined. The required computations are realised efficiently by solving quartic polynomials at most and exactly by using exact arithmetic. The numeric part includes algorithms for the tracing of each intersection curve component, starting from the previously computed reference points. Using interval arithmetic, accidental incorrectness like jumping between branches or the skipping of parts are prevented. Furthermore, the environments of singularities are correctly treated. Our algorithms are complete in the sense that any kind of input can be handled including degenerate and singular configurations. They are verified, since the results are topologically correct and approximate the real intersection curve up to any arbitrary given error bound. The algorithms are robust, since no human intervention is required and they are efficient in the way that the treatment of algebraic equations of high degree is avoided.
Resumo:
This dissertation deals with two specific aspects of a potential hydrogen-based energy economy, namely the problems of energy storage and energy conversion. In order to contribute to the solution of these problems, the structural and dynamical properties of two promising materials for hydrogen storage (lithium imide/amide) and proton conduction (poly[vinyl phosphonic acid]) are modeled on an atomistic scale by means of first principles molecular dynamics simulation methods.rnrnrnIn the case of the hydrogen storage system lithium amide/imide (LiNH_2/Li_2NH), the focus was on the interplay of structural features and nuclear quantum effects. For these calculations, Path-Integral Molecular Dynamics (PIMD) simulations were used. The structures of these materials at room temperature were elucidated; in collaboration with an experimental group, a very good agreement between calculated and experimental solid-state 1H-NMR chemical shifts was observed. Specifically, the structure of Li_2NH features a disordered arrangement of the Li lattice, which was not reported in previous studies. In addition, a persistent precession of the NH bonds was observed in our simulations. We provide evidence that this precession is the consequence of a toroid-shaped effective potential, in which the protons in the material are immersed. This potential is essentially flat along the torus azimuthal angle, which might lead to important quantum delocalization effects of the protons over the torus.rnrnOn the energy conversion side, the dynamics of protons in a proton conducting polymer (poly[vinyl phosphonic acid], PVPA) was studied by means of a steered ab-initio Molecular Dynamics approach applied on a simplified polymer model. The focus was put on understanding the microscopic proton transport mechanism in polymer membranes, and on characterizing the relevance of the local environment. This covers particularly the effect of water molecules, which participate in the hydrogen bonding network in the material. The results indicate that these water molecules are essential for the effectiveness of proton conduction. A water-mediated Grotthuss mechanism is identified as the main contributor to proton conduction, which agrees with the experimentally observed decay on conductivity for the same material in the absence of water molecules.rnrnThe gain in understanding the microscopic processes and structures present in this materials can help the development of new materials with improved properties, thus contributing to the solution of problems in the implementation of fuel cells.