Solvability near the characteristic set for a special class of complex vector fields


Autoria(s): Silva, Paulo Leandro Dattori da; Silva, Evandro Raimundo da
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

14/10/2013

14/10/2013

2012

Resumo

This work deals with the solvability near the characteristic set Sigma = {0} x S-1 of operators of the form L = partial derivative/partial derivative t+(x(n) a(x)+ ix(m) b(x))partial derivative/partial derivative x, b not equivalent to 0 and a(0) not equal 0, defined on Omega(epsilon) = (-epsilon, epsilon) x S-1, epsilon > 0, where a and b are real-valued smooth functions in (-epsilon, epsilon) and m >= 2n. It is shown that given f belonging to a subspace of finite codimension of C-infinity (Omega(epsilon)) there is a solution u is an element of L-infinity of the equation Lu = f in a neighborhood of Sigma; moreover, the L-infinity regularity is sharp.

CNPq

FAPESP

Identificador

ARCHIV DER MATHEMATIK, BASEL, v. 98, n. 2, pp. 183-192, FEB, 2012

0003-889X

http://www.producao.usp.br/handle/BDPI/35051

10.1007/s00013-011-0351-1

http://dx.doi.org/10.1007/s00013-011-0351-1

Idioma(s)

eng

Publicador

BIRKHAUSER VERLAG AG

BASEL

Relação

ARCHIV DER MATHEMATIK

Direitos

restrictedAccess

Copyright BIRKHAUSER VERLAG AG

Palavras-Chave #SEMI-GLOBAL SOLVABILITY #CONDITION (P) #PARTIAL FOURIER SERIES #INFINITE TYPE #GLOBAL SOLVABILITY #TORUS #2-TORUS #MATHEMATICS
Tipo

article

original article

publishedVersion