Solvability near the characteristic set for a special class of complex vector fields
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
14/10/2013
14/10/2013
2012
|
Resumo |
This work deals with the solvability near the characteristic set Sigma = {0} x S-1 of operators of the form L = partial derivative/partial derivative t+(x(n) a(x)+ ix(m) b(x))partial derivative/partial derivative x, b not equivalent to 0 and a(0) not equal 0, defined on Omega(epsilon) = (-epsilon, epsilon) x S-1, epsilon > 0, where a and b are real-valued smooth functions in (-epsilon, epsilon) and m >= 2n. It is shown that given f belonging to a subspace of finite codimension of C-infinity (Omega(epsilon)) there is a solution u is an element of L-infinity of the equation Lu = f in a neighborhood of Sigma; moreover, the L-infinity regularity is sharp. CNPq FAPESP |
Identificador |
ARCHIV DER MATHEMATIK, BASEL, v. 98, n. 2, pp. 183-192, FEB, 2012 0003-889X http://www.producao.usp.br/handle/BDPI/35051 10.1007/s00013-011-0351-1 |
Idioma(s) |
eng |
Publicador |
BIRKHAUSER VERLAG AG BASEL |
Relação |
ARCHIV DER MATHEMATIK |
Direitos |
restrictedAccess Copyright BIRKHAUSER VERLAG AG |
Palavras-Chave | #SEMI-GLOBAL SOLVABILITY #CONDITION (P) #PARTIAL FOURIER SERIES #INFINITE TYPE #GLOBAL SOLVABILITY #TORUS #2-TORUS #MATHEMATICS |
Tipo |
article original article publishedVersion |