Globally solvable systems of complex vector fields


Autoria(s): Bergamasco, Adalberto Panobianco; Medeira, Cléber de; Zani, Sergio Luis
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

24/10/2013

24/10/2013

2012

Resumo

We consider a class of involutive systems of n smooth vector fields on the n + 1 dimensional torus. We obtain a complete characterization for the global solvability of this class in terms of Liouville forms and of the connectedness of all sublevel and superlevel sets of the primitive of a certain 1-form in the minimal covering space.

FAPESP

CNPq

Identificador

JOURNAL OF DIFFERENTIAL EQUATIONS, SAN DIEGO, v. 252, n. 8, pp. 4598-4623, APR 15, 2012

0022-0396

http://www.producao.usp.br/handle/BDPI/35834

10.1016/j.jde.2012.01.007

http://dx.doi.org/10.1016/j.jde.2012.01.007

Idioma(s)

eng

Publicador

ACADEMIC PRESS INC ELSEVIER SCIENCE

SAN DIEGO

Relação

JOURNAL OF DIFFERENTIAL EQUATIONS

Direitos

restrictedAccess

Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE

Palavras-Chave #GLOBAL SOLVABILITY #COMPLEX VECTOR FIELDS #INVOLUTIVE SYSTEMS #LIOUVILLE NUMBER #OVERDETERMINED SYSTEMS #SOLVABILITY #MATHEMATICS
Tipo

article

original article

publishedVersion