970 resultados para Offset printing
Resumo:
X-ray photoelectron spectroscopy has been used to measure the valence band offset (VBO) of the ZnO/SrTiO3 heterojunction. It is found that a type-II band alignment forms at the interface. The VBO and conduction band offset (CBO) are determined to be 0.62 +/- 0.23 and 0.79 +/- 0.23 eV, respectively. The directly obtained VBO value is in good agreement with the result of theoretical calculations based on the interface-induced gap states and the chemical electronegativity theory. Furthermore, the CBO value is also consistent with the electrical transport investigations.
Resumo:
The valence band offset (VBO) of InN/4H-SiC heterojunction has been directly measured by x-ray photoelectron spectroscopy. The VBO is determined to be 0.55 +/- 0.23 eV and the conduction band offset is deduced to be -2.01 +/- 0.23 eV, indicating that the heterojunction has a type-I band alignment. The accurate determination of the valence and conduction band offsets is important for applications of InN/SiC optoelectronic devices.
Resumo:
The valence band offset (VBO) of the wurtzite InN/ZnO heterojunction is directly determined by x-ray photoelectron spectroscopy to be 0.82 +/- 0.23 eV. The conduction band offset is deduced from the known VBO value to be 1.85 -/+ 0.23 eV, which indicates a type-I band alignment for InN/ZnO heterojunction. (C) 2007 American Institute of Physics.
Resumo:
We have investigated the optical transitions in Ga1-yInyNxAs1-x/GaAs single and multiple quantum wells using photovoltaic measurements at room temperature. From a theoretical fit to the experimental data, the conduction band offset Q(c), electron effective mass m(e)*, and band gap energy E-g were estimated. It was found that the Q(c) is dependent on the indium concentration, but independent on the nitrogen concentration over the range x=(0-1)%. The m(e)* of GaInNAs is much greater than that of InGaAs with the same concentration of indium, and increases as the nitrogen concentration increases up to 1%. Our experimental results for the m(e)* and E-g of GaInNAs are quantitatively explained by the two-band model based on the strong interaction of the conduction band minimum with the localized N states. (C) 2001 American Institute of Physics.
Resumo:
The conduction-band offset Delta E-C has been determined for a molecular beam epitaxy grown GaAs/In0.2Ga0.8As single quantum-well structure, by measuring the capacitance-voltage (C - V) profiling, taking into account a correction for the interface charge density, and the capacitance transient resulting from thermal emission of carriers from the quantum well, respectively. We found that Delta E-C = 0.227 eV, corresponding to about 89% Delta E-g, from the C - V profiling; and Delta E-C = 0.229eV, corresponding to about 89.9% Delta E-g, from the deep-level transient spectroscopy (DLTS) technique. The results suggest that the conduction-band discontinuity Delta E-C obtained from the C-V profiling is in good agreement with that obtained from the DLTS technique. (C) 1998 American Institute of Physics.
Resumo:
This paper presents a 5GHz double-balanced mixer with DC-offset cancellation circuit for direct-conversion receiver compliant with IEEE 802.11a wireless LAN standard. The analog feedback loop is used, to eliminate the DC-offset at the output of the double-balanced mixer. The test results show that the mixer with DC-offset cancellation circuit has voltage conversion gain of 9.5dB at 5.15GHz, noise figure of 13.5dB, IIP3 of 7.6 dBm, 1.73mV DC-offset voltage and 67mW power with 3.3-V power supply. The DC-offset cancellation circuit has less than 0.1mm(2) additional area and 0.3mW added power dissipation. The direct conversion WLAN receiver has been implemented in a 0.35 mu m SiGe BiCMOS technology.
Resumo:
A new carrier frequency offset estimation scheme in orthogonal frequency division multiplexing (OFDM) is proposed. The scheme includes coarse frequency offset estimation and fine frequency offset estimation. The coarse frequency offset estimation method we present is a improvement of Zhang's method. The estimation range of the new method is as large as the overall signal-band width. A new fine frequency offset estimation algorithm is also discussed in this paper. The new algorithm has a better performance than the Schmidl's algorithm. The system we use to calculate and simulate is based on the high rate WLAN standard adopted by the IEEE 802.11 stanidardization group. Numerical results are presented to demonstrate the performance of the proposed algorithm.
Resumo:
A DC-offset cancellation scheme in the 5GHz direct-conversion receiver compliant with IEEE 802.11a wireless LAN standard is described in this paper. It uses the analog feedback loop to eliminate the DC-offset at the output of the double-balanced mixer. The mixer has a simulation voltage conversion gain of IMB at 5.2GHz, noise figure of 9.67dB, IIP3 of 7.6dBm. The solution provides 39.1dB reduction according to the leakage value at LO and mixer load resistors, the additional noise figure added to mixer is less than 0.9dB, the added power dissipation is 0.1mW and was fabricated in 60GHz 0.35 mu m SiGe BiCMOS technology.
Resumo:
A-new-carrier-frequency offset estimation scheme in orthogonal frequency division multiplexing (OFDM) is proposed. The scheme includes coarse frequency offset estimation and fine frequency offset estimation. The coarse frequency offset estimation method we present is a improvement of Zhang's method. The estimation range of the new method is as large as the overall signal-band width. A new fine frequency offset estimation algorithm is also discussed in this paper. The new algorithm has a better performance than the Schmidt's algorithm. The system we use to calculate and simulate is based on the high rate WLAN standard adopted by the IEEE 802.11 standardization group. Numerical results are presented to demonstrate the performance of the proposed algorithm.
Resumo:
X-ray photoelectron spectroscopy has been used to measure the valence band offset of the ZnO/BaTiO3 heterojunction grown by metal-organic chemical vapor deposition. The valence band offset (VBO) is determined to be 0.48 +/- 0.09 eV, and the conduction band offset (CBO) is deduced to be about 0.75 eV using the band gap of 3.1 eV for bulk BaTiO3. It indicates that a type-II band alignment forms at the interface, in which the valence and conduction bands of ZnO are concomitantly higher than those of BaTiO3. The accurate determination of VBO and CBO is important for use of semiconductor/ferroelectric heterojunction multifunctional devices.
Resumo:
The influence of band bending and polarization on the valence band offset measured by x-ray photoelectron spectroscopy (XPS) is discussed, and a modification method based on a modified self-consistent calculation is proposed to eliminate the influence and thus increasing the precision of XPS. Considering the spontaneous polarization at the surfaces and interfaces and the different positions of Fermi levels at the surfaces, we compare the energy band structures of Al/Ga-polar AlN/GaN and N-polar GaN/AlN heterojunctions, and give corrections to the XPS-measured valence band offsets. Other AlN/GaN heterojunctions and the piezoelectric polarization are also introduced and discussed in this paper.
Resumo:
X-ray photoelectron spectroscopy has been used to measure the valence band offset (VBO) at the GaN/Ge heterostructure interface. The VBO is directly determined to be 1.13 +/- 0.19 eV, according to the relationship between the conduction band offset Delta E-C and the valence band offset Delta E-V : Delta E-C = E-g(GaN) - E-g(Ge) - Delta E-V, and taking the room-temperature band-gaps as 3.4 and 0.67 eV for GaN and Ge, respectively. The conduction band offset is deduced to be 1.6 +/- 0.19 eV, which indicates a type-I band alignment for GaN/Ge. Accurate determination of the valence and conduction band offsets is important for the use of GaN/Ge based devices.
Valence band offset of MgO/TiO2 (rutile) heterojunction measured by X-ray photoelectron spectroscopy
Resumo:
The valence band offset (VBO) of MgO/TiO2 (rutile) heterojunction has been directly measured by Xray photoelectron spectroscopy. The VBO of the heterojunction is determined to be 1.6 +/- 0.3 eV and the conduction band offset (CBO) is deduced to be 3.2 +/- 0.3 eV, indicating that the heterojunction exhibits a type-I band alignment. These large values are sufficient for MgO to act as tunneling barriers in TiO2 based devices. The accurate determination of the valence and conduction band offsets is important for use of MgO as a buffer layer in TiO2 based field-effect transistors and dye-sensitized solar cells.
Resumo:
N+ GaAs-n GaInP lattice-matched heterostructures, grown by metalorganic vapour phase epitaxy, have been studied by capacitance-voltage, current-voltage and current-temperature techniques. This allowed the determination of the conduction band offset in three different and independent ways. The value obtained (0.24-0.25 eV) has been verified by photoluminescence and photoluminescence excitation on a 90 angstrom thick GaAs well in GaInP grown under the same conditions.
Resumo:
The tunneling from an AlGaAs confined thin layer to a GaAs layer in the GaAs/Al0.33Ga0.67As/GaAs structure during the trapped electron emission from deep level in the AlGaAs to its conduction band has been observed by deep level transient spectroscopy. With the aid of the tunneling effect, the conduction-band offset DELTAE(c) was determined to be 0.260 eV, corresponding to 63% of DELTAE(g). A calculation was also carried out based on this tunneling model by using the experimental value of DELTAE(c) = E2 - E1 = 0. 260 eV, and good agreement between the experimental and calculated curves is obtained.