958 resultados para K-uniformly Convex Functions
Resumo:
Isentropic compressibilities, Rao's molar sound functions, molar refractions, excess isentropic compressibilities, excess molar volumes, viscosity deviations and excess Gibbs energies of activation of viscous flow for seven binary mixtures of tetrahydrofuran (THF) with cyclohexane, methylcyclohexane, n-hexane, benzene, toluene, p-xylene and propylbenzene over the entire range of composition at 303.15 K have been derived from experimental densities, speeds of sound, refractive indices and viscosities. The excess partial molar volumes of THF in different solvents have been estimated. The experimental results have been analyzed in terms of the Prigogine–Flory–Patterson theory.
Resumo:
Let $\Gamma$ be the class of sequentially complete locally convex spaces such that an existence theorem holds for the linear Cauchy problem $\dot x = Ax$, $x(0) = x_0$ with respect to functions $x: R\to E$. It is proved that if $E\in \Gamma$, then $E\times R^A$ is-an-element-of $\Gamma$ for an arbitrary set $A$. It is also proved that a topological product of infinitely many infinite-dimensional Frechet spaces, each not isomorphic to $\omega$, does not belong to $\Gamma$.
Resumo:
For some time there is a large interest in variable step-size methods for adaptive filtering. Recently, a few stochastic gradient algorithms have been proposed, which are based on cost functions that have exponential dependence on the chosen error. However, we have experienced that the cost function based on exponential of the squared error does not always satisfactorily converge. In this paper we modify this cost function in order to improve the convergence of exponentiated cost function and the novel ECVSS (exponentiated convex variable step-size) stochastic gradient algorithm is obtained. The proposed technique has attractive properties in both stationary and abrupt-change situations. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Prokaryotes represent one-half of the living biomass on Earth, with the vast majority remaining elusive to culture and study within the laboratory. As a result, we lack a basic understanding of the functions that many species perform in the natural world. To address this issue, we developed complementary population and single-cell stable isotope (C-13)-linked analyses to determine microbial identity and function in situ. We demonstrated that the use of rRNA/mRNA stable isotope probing (SIP) recovered the key phylogenetic and functional RNAs. This was followed by single-cell physiological analyses of these populations to determine and quantify in situ functions within an aerobic naphthalene-degrading groundwater microbial community. Using these culture-independent approaches, we identified three prokaryote species capable of naphthalene biodegradation within the groundwater system: two taxa were isolated in the laboratory (Pseudomonas fluorescens and Pseudomonas putida), whereas the third eluded culture (an Acidovorax sp.). Using parallel population and single-cell stable isotope technologies, we were able to identify an unculturable Acidovorax sp. which played the key role in naphthalene biodegradation in situ, rather than the culturable naphthalene-biodegrading Pseudomonas sp. isolated from the same groundwater. The Pseudomonas isolates actively degraded naphthalene only at naphthalene concentrations higher than 30 mu M. This study demonstrated that unculturable microorganisms could play important roles in biodegradation in the ecosystem. It also showed that the combined RNA SIP-Raman-fluorescence in situ hybridization approach may be a significant tool in resolving ecology, functionality, and niche specialization within the unculturable fraction of organisms residing in the natural environment.
Resumo:
Bank conflicts can severely reduce the bandwidth of an interleaved multibank memory and conflict misses increase the miss rate of a cache or a predictor. Both occurrences are manifestations of the same problem: Objects which should be mapped to different indices are accidentally mapped to the same index. Suitable chosen hash functions can avoid conflicts in each of these situations by mapping the most frequently occurring patterns conflict-free. A particularly interesting class of hash functions are the XOR-based hash functions, which compute each set index bit as the exclusive-or of a subset of the address bits. When implementing an XOR-based hash function, it is extremely important to understand what patterns are mapped conflict-free and how a hash function can be constructed to map the most frequently occurring patterns without conflicts. Hereto, this paper presents two ways to reason about hash functions: by their null space and by their column space. The null space helps to quickly determine whether a pattern is mapped conflict-free. The column space is more useful for other purposes, e. g., to reduce the fan-in of the XOR-gates without introducing conflicts or to evaluate interbank dispersion in skewed-associative caches. Examples illustrate how these ideas can be applied to construct conflict-free hash functions.
Resumo:
Caches hide the growing latency of accesses to the main memory from the processor by storing the most recently used data on-chip. To limit the search time through the caches, they are organized in a direct mapped or set-associative way. Such an organization introduces many conflict misses that hamper performance. This paper studies randomizing set index functions, a technique to place the data in the cache in such a way that conflict misses are avoided. The performance of such a randomized cache strongly depends on the randomization function. This paper discusses a methodology to generate randomization functions that perform well over a broad range of benchmarks. The methodology uses profiling information to predict the conflict miss rate of randomization functions. Then, using this information, a search algorithm finds the best randomization function. Due to implementation issues, it is preferable to use a randomization function that is extremely simple and can be evaluated in little time. For these reasons, we use randomization functions where each randomized address bit is computed as the XOR of a subset of the original address bits. These functions are chosen such that they operate on as few address bits as possible and have few inputs to each XOR. This paper shows that to index a 2(m)-set cache, it suffices to randomize m+2 or m+3 address bits and to limit the number of inputs to each XOR to 2 bits to obtain the full potential of randomization. Furthermore, it is shown that the randomization function that we generate for one set of benchmarks also works well for an entirely different set of benchmarks. Using the described methodology, it is possible to reduce the implementation cost of randomization functions with only an insignificant loss in conflict reduction.
Resumo:
Experimental values for the solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon and carbon monoxide in 1-butyl-3- methylimidazolium tetrafluoroborate, [bmim][BF4] - a room temperature ionic liquid - are reported as a function of temperature between 283 K and 343 K and at pressures close to atmospheric. Carbon dioxide is the most soluble gas with mole fraction solubilities of the order of 10-2. Ethane and methane are one order of magnitude more soluble than the other five gases that have mole fraction solubilities of the order of 10-4. Hydrogen is the less soluble of the gaseous solutes studied. From the variation of solubility, expressed as Henry's law constants, with temperature, the partial molar thermodynamic functions of solvation such as the standard Gibbs energy, the enthalpy, and the entropy are calculated. The precision of the experimental data, considered as the average absolute deviation of the Henry's law constants from appropriate smoothing equations is of 1%. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
The evolution of the amplitude of two nonlinearly interacting waves is considered, via a set of coupled nonlinear Schrödinger-type equations. The dynamical profile is determined by the wave dispersion laws (i.e. the group velocities and the group velocity dispersion terms) and the nonlinearity and coupling coefficients, on which no assumption is made. A generalized dispersion relation is obtained, relating the frequency and wave-number of a small perturbation around a coupled monochromatic (Stokes') wave solution. Explicitly stability criteria are obtained. The analysis reveals a number of possibilities. Two (individually) stable systems may be destabilized due to coupling. Unstable systems may, when coupled, present an enhanced instability growth rate, for an extended wave number range of values. Distinct unstable wavenumber windows may arise simultaneously.