Discrete approximations for strict convex continuous time problems and duality
| Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
|---|---|
| Data(s) |
20/05/2014
20/05/2014
01/01/2004
|
| Resumo |
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) We propose a discrete approximation scheme to a class of Linear Quadratic Continuous Time Problems. It is shown, under positiveness of the matrix in the integral cost, that optimal solutions of the discrete problems provide a sequence of bounded variation functions which converges almost everywhere to the unique optimal solution. Furthermore, the method of discretization allows us to derive a number of interesting results based on finite dimensional optimization theory, namely, Karush-Kuhn-Tucker conditions of optimality and weak and strong duality. A number of examples are provided to illustrate the theory. |
| Formato |
81-105 |
| Identificador |
http://www.scielo.br/scielo.php?pid=S1807-03022004000100005&script=sci_arttext Computational & Applied Mathematics. Sao Carlos Sp: Soc Brasileira Matematica Aplicada & Computacional, v. 23, n. 1, p. 81-105, 2004. 0101-8205 http://hdl.handle.net/11449/34247 S1807-03022004000100005 WOS:000208135000005 WOS000208135000005.pdf |
| Idioma(s) |
eng |
| Publicador |
Soc Brasileira Matematica Aplicada & Computacional |
| Relação |
Computational & Applied Mathematics |
| Direitos |
openAccess |
| Palavras-Chave | #Linear Quadratic problems #Continuous time optimization #discrete approximation #strict convexity |
| Tipo |
info:eu-repo/semantics/article |