Discrete approximations for strict convex continuous time problems and duality


Autoria(s): Andreani, R.; Goncalves, P. S.; Silva, Geraldo Nunes
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

01/01/2004

Resumo

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

We propose a discrete approximation scheme to a class of Linear Quadratic Continuous Time Problems. It is shown, under positiveness of the matrix in the integral cost, that optimal solutions of the discrete problems provide a sequence of bounded variation functions which converges almost everywhere to the unique optimal solution. Furthermore, the method of discretization allows us to derive a number of interesting results based on finite dimensional optimization theory, namely, Karush-Kuhn-Tucker conditions of optimality and weak and strong duality. A number of examples are provided to illustrate the theory.

Formato

81-105

Identificador

http://www.scielo.br/scielo.php?pid=S1807-03022004000100005&script=sci_arttext

Computational & Applied Mathematics. Sao Carlos Sp: Soc Brasileira Matematica Aplicada & Computacional, v. 23, n. 1, p. 81-105, 2004.

0101-8205

http://hdl.handle.net/11449/34247

S1807-03022004000100005

WOS:000208135000005

WOS000208135000005.pdf

Idioma(s)

eng

Publicador

Soc Brasileira Matematica Aplicada & Computacional

Relação

Computational & Applied Mathematics

Direitos

openAccess

Palavras-Chave #Linear Quadratic problems #Continuous time optimization #discrete approximation #strict convexity
Tipo

info:eu-repo/semantics/article