Schur-SzegA composition of entire functions


Autoria(s): Dimitrov, Dimitar Kolev; Kostov, Vladimir P.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

01/07/2012

Resumo

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Processo FAPESP: 09/13832-9

For any pair of algebraic polynomials A(x) = Sigma(n)(k=0) ((n)(k))a(k)x(k) and B(x) = Sigma(n)(k=0) ((n)(k))b(k)x(k), their Schur-Szego composition is defined by (A (*)(n) B)(x) = Sigma(n)(k=0) ((n)(k))a(k)b(k)x(k). Motivated by some recent results which show that every polynomial P(x) of degree n with P(-1) = 0 can be represented as K-a1 (*)(n) ... (*)(n) Kan-1 with K-a := (x + 1)(n-1) (x + a), we introduce the notion of Schur-Szego composition of formal power series and study its properties in the case when the series represents an entire function. We also concentrate on the special case of composition of functions of the form e(x) P(x), where P(x) is an algebraic polynomial and investigate its properties in detail.

Formato

475-491

Identificador

http://dx.doi.org/10.1007/s13163-011-0078-3

Revista Matematica Complutense. New York: Springer, v. 25, n. 2, p. 475-491, 2012.

1139-1138

http://hdl.handle.net/11449/21767

10.1007/s13163-011-0078-3

WOS:000305478800007

Idioma(s)

eng

Publicador

Springer

Relação

Revista Matematica Complutense

Direitos

closedAccess

Palavras-Chave #Schur-Szego composition #Entire functions #Hyperbolic polynomials #Laguerre-Polya class
Tipo

info:eu-repo/semantics/article