Zeros of Jacobi functions of second kind
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
20/05/2014
20/05/2014
01/04/2006
|
Resumo |
The number of zeros in (- 1, 1) of the Jacobi function of second kind Q(n)((alpha, beta)) (x), alpha, beta > - 1, i.e. The second solution of the differential equation(1 - x(2))y (x) + (beta - alpha - (alpha + beta + 2)x)y' (x) + n(n + alpha + beta + 1)y(x) = 0,is determined for every n is an element of N and for all values of the parameters alpha > - 1 and beta > - 1. It turns out that this number depends essentially on alpha and beta as well as on the specific normalization of the function Q(n)((alpha, beta)) (x). Interlacing properties of the zeros are also obtained. As a consequence of the main result, we determine the number of zeros of Laguerre's and Hermite's functions of second kind. (c) 2005 Elsevier B.V. All rights reserved. |
Formato |
65-76 |
Identificador |
http://dx.doi.org/10.1016/j.cam.2005.03.055 Journal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 188, n. 1, p. 65-76, 2006. 0377-0427 http://hdl.handle.net/11449/21717 10.1016/j.cam.2005.03.055 WOS:000234789100005 WOS000234789100005.pdf |
Idioma(s) |
eng |
Publicador |
Elsevier B.V. |
Relação |
Journal of Computational and Applied Mathematics |
Direitos |
openAccess |
Palavras-Chave | #Jacobi functions of second kind #zeros #Jacobi polynomials #interlacing properties of zeros #Laguerre and Hermite functions of second kind |
Tipo |
info:eu-repo/semantics/article |