Zeros of Jacobi functions of second kind


Autoria(s): Area, I; Dimitrov, D. K.; Godoy, E.; Ronveaux, A.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

01/04/2006

Resumo

The number of zeros in (- 1, 1) of the Jacobi function of second kind Q(n)((alpha, beta)) (x), alpha, beta > - 1, i.e. The second solution of the differential equation(1 - x(2))y (x) + (beta - alpha - (alpha + beta + 2)x)y' (x) + n(n + alpha + beta + 1)y(x) = 0,is determined for every n is an element of N and for all values of the parameters alpha > - 1 and beta > - 1. It turns out that this number depends essentially on alpha and beta as well as on the specific normalization of the function Q(n)((alpha, beta)) (x). Interlacing properties of the zeros are also obtained. As a consequence of the main result, we determine the number of zeros of Laguerre's and Hermite's functions of second kind. (c) 2005 Elsevier B.V. All rights reserved.

Formato

65-76

Identificador

http://dx.doi.org/10.1016/j.cam.2005.03.055

Journal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 188, n. 1, p. 65-76, 2006.

0377-0427

http://hdl.handle.net/11449/21717

10.1016/j.cam.2005.03.055

WOS:000234789100005

WOS000234789100005.pdf

Idioma(s)

eng

Publicador

Elsevier B.V.

Relação

Journal of Computational and Applied Mathematics

Direitos

openAccess

Palavras-Chave #Jacobi functions of second kind #zeros #Jacobi polynomials #interlacing properties of zeros #Laguerre and Hermite functions of second kind
Tipo

info:eu-repo/semantics/article