C(k)-solvability near the characteristic set for a class of planar complex vector fields of infinite type


Autoria(s): SILVA, Paulo Leandro Dattori da
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2010

Resumo

This paper deals with semi-global C(k)-solvability of complex vector fields of the form L = partial derivative/partial derivative t + x(r) (a(x) + ib(x))partial derivative/partial derivative x, r >= 1, defined on Omega(epsilon) = (-epsilon, epsilon) x S(1), epsilon > 0, where a and b are C(infinity) real-valued functions in (-epsilon, epsilon). It is shown that the interplay between the order of vanishing of the functions a and b at x = 0 influences the C(k)-solvability at Sigma = {0} x S(1). When r = 1, it is permitted that the functions a and b of L depend on the x and t variables, that is, L = partial derivative/partial derivative t + x(a(x, t) + ib(x, t))partial derivative/partial derivative x, where (x, t) is an element of Omega(epsilon).

FAPESP

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Identificador

ANNALI DI MATEMATICA PURA ED APPLICATA, v.189, n.3, p.403-413, 2010

0373-3114

http://producao.usp.br/handle/BDPI/28819

10.1007/s10231-009-0115-8

http://dx.doi.org/10.1007/s10231-009-0115-8

Idioma(s)

eng

Publicador

SPRINGER HEIDELBERG

Relação

Annali Di Matematica Pura Ed Applicata

Direitos

restrictedAccess

Copyright SPRINGER HEIDELBERG

Palavras-Chave #Solvability near the characteristic set #Complex vector fields #Normalization #Condition (P) #GLOBAL SOLVABILITY #TORUS #2-TORUS #Mathematics, Applied #Mathematics
Tipo

article

original article

publishedVersion