963 resultados para Análisis Matemático
Resumo:
Los resultados obtenidos en los exámenes de admisión han sido deficientes en general, y en particular para los que se corresponden con los resultados del Eje Lógico Matemático del Departamento de Ciencia y Tecnología. Resulta conveniente el conocimiento de los errores básicos, ya que provee información sobre las dificultades con las se enfrentan los alumnos al interpretar los problemas y utilizar los diferentes procedimientos para alcanzar una meta. Los errores son datos objetivos que encontramos permanentemente en los procesos de enseñanza y aprendizaje de la matemática; constituyen un elemento estable en los mismos. A partir de este descubrimiento, el estudiante puede ocupar distintas propiedades de un concepto que antes no era capaz de utilizar. Para abordar el problema utilizaremos la clasificación en diversas categorías de los errores que Luis Rico (1995) recupera en Radatz (1979), ofreciendo una clasificación de los mismos basada en las dificultades que los ocasionan, y en la consideración teórica del error que se recupera de Socas (1997). Finalmente, luego de realizar un análisis cuantitativo de la información utilizando tablas de clasificación, presentamos una serie de sugerencias para no incurrir en el error, y evitar así la dificultad (Ruano, 2008); para pasar de este modo a las conclusiones, que incluyen una autocrítica.
Resumo:
Los resultados obtenidos en los exámenes de admisión han sido deficientes en general, y en particular para los que se corresponden con los resultados del Eje Lógico Matemático del Departamento de Ciencia y Tecnología. Resulta conveniente el conocimiento de los errores básicos, ya que provee información sobre las dificultades con las se enfrentan los alumnos al interpretar los problemas y utilizar los diferentes procedimientos para alcanzar una meta. Los errores son datos objetivos que encontramos permanentemente en los procesos de enseñanza y aprendizaje de la matemática; constituyen un elemento estable en los mismos. A partir de este descubrimiento, el estudiante puede ocupar distintas propiedades de un concepto que antes no era capaz de utilizar. Para abordar el problema utilizaremos la clasificación en diversas categorías de los errores que Luis Rico (1995) recupera en Radatz (1979), ofreciendo una clasificación de los mismos basada en las dificultades que los ocasionan, y en la consideración teórica del error que se recupera de Socas (1997). Finalmente, luego de realizar un análisis cuantitativo de la información utilizando tablas de clasificación, presentamos una serie de sugerencias para no incurrir en el error, y evitar así la dificultad (Ruano, 2008); para pasar de este modo a las conclusiones, que incluyen una autocrítica.
Resumo:
Nosotros los autores de la presente investigación, como educadores rurales de los municipios de El Carmen de Viboral y Santa Bárbara, del Departamento de Antioquia en Colombia, por medio de la técnica de análisis de contenidos y el diseño de instrumentos acordes al objetivo de esta investigación, realizamos una aproximación al pensamiento matemático planteado desde el modelo pedagógico de Escuela Nueva, con el objetivo de identificar y establecer hasta qué punto los hallazgos de la Secretaria de Educación de Antioquia en 2013 se hacen presentes en los módulos de matemáticas de cuarto y quinto grado. Desde la experiencia docente y apoyados en una metodología de investigación de tipo cualitativa, se diseñaron partiendo de la técnica antes mencionada dichos instrumentos de recolección y análisis de la información, teniendo como referente la Socioepistemología, para dejar evidencias de cómo están presentes los tipos de pensamiento y la manera cómo se pueden potenciar para fortalecer el proceso de enseñanza y aprendizaje en coherencia con los estándares y lineamientos curriculares para esta área.
Resumo:
En este trabajo se presenta una metodología de investigación basada en la resolución de problemas para el análisis del razonamiento inductivo que llevan a cabo un grupo de 359 estudiantes que cursan 3¼ y 4¼ de ESO en España. Tras la justificación del interés en considerar las progresiones aritméticas de números naturales de órdenes 1 y 2 como contenido matemático, se muestran las variables que han permitido identificar unos tipos de problemas adecuados para nuestro objetivo de investigación relacionados con ese contenido matemático. Finalmente, se considera la prueba escrita individual como modo de recogida de información y se introduce la forma en que se realiza la corrección de los problemas seleccionados teniendo en cuenta el razonamiento inductivo y las variables consideradas para la selección de los tipos de problemas.
Resumo:
En este documento, describo algunos aspectos del significado con el que usamos la expresión "análisis didáctico" en la asignatura Didáctica de la Matemática en el Bachillerato de la Universidad de Granada. En particular, introduzco el análisis didáctico como un nivel del currículo y establezco su papel en la identificación, organización y selección de los múltiples significados de un concepto matemático para efectos de diseñar, llevar a la práctica y evaluar unidades didácticas. Estas consideraciones dan lugar a algunas reflexiones sobre el papel del análisis didáctico en la formación inicial de profesores de matemáticas de secundaria.
Resumo:
La comprensión del conocimiento matemático constituye un objeto de investigación de interés creciente en Educación Matemática. No obstante, su elevada complejidad hace que los avances más recientes aún resulten insuficientes y reclama la necesidad de ir adoptando enfoques más operativos y menos preocupados por el estudio directo de sus aspectos internos. En tal sentido, se presentan aquí las bases de una aproximación centrada en los efectos observables de la comprensión, que utiliza el análisis de comportamientos y respuestas adaptadas a situaciones expresamente planificadas derivadas del análisis fenómeno-epistemológico del conocimiento matemático. La operatividad de la propuesta se ilustra con el estudio realizado sobre el algoritmo estándar escrito para la multiplicación de números naturales.
Resumo:
En este documento, describo algunos aspectos del significado con el que usamos la expresión “análisis didáctico” en la asignatura Didáctica de la Matemática en el Bachillerato de la Universidad de Granada. En particular, introduzco el análisis didáctico como un nivel del currículo y establezco su papel en la identificación, organización y selección de los múltiples significados de un concepto matemático para efectos de diseñar, llevar a la práctica y evaluar unidades didácticas. Estas consideraciones dan lugar a algunas reflexiones sobre el papel del análisis didáctico en el diseño de planes de formación inicial de profesores de matemáticas de secundaria, en la identificación de las capacidades que califican la competencia de planificación del futuro profesor de matemáticas y en la caracterización de su conocimiento teórico, técnico y práctico.
Resumo:
En este trabajo se expone una visión actualizada del Análisis Didáctico como instrumento metodológico específico para la investigación en Educación Matemática. La potencialidad práctica del método se ilustra con la descripción de su aplicación en un estudio desarrollado recientemente sobre la comprensión del conocimiento matemático (Gallardo, 2004). En base a esta experiencia se destacan además las principales limitaciones e interrogantes metodológicos generados por el Análisis Didáctico junto con algunas posibilidades de mejora futura.
Resumo:
En este trabajo se presenta el resultado obtenido del análisis de un proceso de razonamiento inductivo desarrollado por 12 estudiantes de secundaria en un contexto de resolución de problemas. Se plantea un problema, en el transcurso de una entrevista, que consiste en determinar el número máximo de regiones que se obtienen al trazar rectas sobre un plano. Durante la resolución del problema los estudiantes, y a través del dialogo con el entrevistador, han de explicar y justificar sus decisiones. Centrándonos en el trabajo de Pólya y en otras investigaciones previas relacionadas sobre este tema, se define un sistema de categorías mediante las cuales se organizan los datos para su análisis.
Resumo:
En este informe, presentamos el análisis de datos de una pareja de estudiantes durante la resolución de un problema de generalización en una clase de matemáticas de secundaria (15-16 años). De acuerdo con las teorías interaccionistas del aprendizaje matemático, asumimos que el discurso establecido en la interacción en pareja es un factor clave de influencia en los procesos de construcción de conocimiento matemático. Hasta ahora, los resultados ponen de relieve la relación entre el uso de ciertos indicadores discursivos y los avances en la "intención argumentativa" de las estudiantes. La mayoría de intercambios con intención argumentativa vienen precedidos o acompañados por refutación y cuestionamiento, y en menor grado, validación. La refinación del análisis actual se está realizando dentro del trabajo de tesis doctoral de la primera autora.
Resumo:
Una vez realizado el análisis de contenido, en el que el foco de atención es el tema matemático que se va a enseñar, pasamos a realizar otro análisis en el que el foco de atención es el aprendizaje del estudiante. Se trata de hacer una descripción de las expectativas del profesor sobre lo que se espera que el alumno aprenda y sobre el modo en que se va a desarrollar ese aprendizaje. Esta es una problemática muy compleja que puede enfocarse desde muchos puntos de vista. Aquí haremos una aproximación concreta que pretende dar respuesta a las siguientes cuestiones: (a) establecer las expectativas de aprendizaje que se desean desarrollar sobre el tema matemático: determinar a qué competencias se quiere contribuir, seleccionar los objetivos de aprendizaje que se pretenden desarrollar e identificar qué capacidades de los estudiantes se ponen en juego; (b) determinar las limitaciones al aprendizaje que surgen en el tema matemático: qué dificultades y errores van a surgir en el proceso de aprendizaje; y (c) expresar hipótesis sobre cómo se puede desarrollar el aprendizaje al abordar tareas matemáticas: especificar, mediante caminos de aprendizaje, conjeturas sobre el proceso que seguirán los alumnos al resolver tareas matemáticas. Las cuestiones anteriores se vertebran en torno a los siguientes organizadores del currículo que intervienen en el análisis cognitivo: expectativas de aprendizaje (competencias, objetivos y capacidades), errores y dificultades, y caminos de aprendizaje.
Resumo:
Una vez realizado el análisis de contenido, en el que el foco de atención es el tema matemático que se va a enseñar, y examinado el aprendizaje del estudiante en el análisis cognitivo, en el aná-lisis de instrucción vamos a estudiar qué medios dispone el profesor para lograr sus fines. El foco de atención será la enseñanza. Se trata de hacer una descripción de los medios que va a poner en práctica el profesor para lograr sus expectativas de aprendizaje.
Resumo:
En Colombia existen pocos estudios relativos al objeto de esta investigación, los que hay son referidos a la básica primaria y preescolar. El tercer estudio internacional de matemáticas y ciencias TIMSS, es la continuación de una serie de estudios en educación matemática para establecer el alcance de los logros educativos en estas áreas. Por otro lado, la Agenda Internacional de Educación Matemática ha recomendado investigar algunos tópicos asociados a estos logros; el tema de esta investigación es uno de ellos. En este caso se ha indagado sobre muchos aspectos que rodean la formulación de logros hasta la evaluación de los mismos, por que estos direccionan el aprendizaje del conocimiento matemático escolar. De ahí que se deban tener en cuenta ciertos elementos teóricos y prácticos planteados en la legislación vigente para el sistema educativo y los procesos de desarrollo y pensamiento entre otros. El trabajo parte de una teorización de la evaluación como referente para analizar la información obtenida de una muestra aleatoria tomada de 15 colegios del Departamento del Cesar donde se entrevistó también aleatoriamente a 60 profesores y 552 estudiantes entre 7° y 11° grados. Los resultados muestran una categorización de los elementos que participan en este proceso como son: los fundamentos para plantear o establecer los logros del aprendizaje, los mecanismos para evaluar, la valoración por períodos, niveles de importancia de algunos factores cuando se evalúa, aspectos que determinan la evaluación, dificultades para valorar los logros, criterios para la evaluación, tipos de evaluación aplicadas por los profesores, objeto de la evaluación y otros. Como conclusión del análisis de esta información, se desprenden una serie de recomendaciones de cómo valorar los logros del aprendizaje matemático para contribuir al mejoramiento de las prácticas evaluativas y la formulación de logros por parte de los profesores de matemáticas.
Resumo:
En este trabajo se presenta una aplicación del Análisis de Redes Sociales (ARS) al estudio de las relaciones entre alumnos de segundo año de una Escuela Técnica. El ARS se apoya en la teoría de grafos cuyo bagaje matemático permite analizar y medir, en términos generales, propiedades de las estructuras sociales en particular la escuela. La vida escolar es una trama compleja de factores que influirían en el rendimiento académico de los alumnos, tales como: tiempo de estudio que comparten, desde cuándo se conocen entre los compañeros, la proximidad de sus domicilios, sexo, edad, entre otros. Los factores sexo y edad no son relevantes dado que el grupo bajo estudio está formado por varones alrededor de los 16 años. En este trabajo se mostrarán los resultados obtenidos por el primer factor mencionado que fueron procesados a través de los software Ucinet 6 y Netdraw.
Resumo:
En este trabajo presentamos una caracterización del currículo matemático de nivel medio en el Estado de Yucatán, en tanto su estructura y la orientación de sus componentes con el fin de dar indicios sobre la planificación, qué matemáticas estudiar y cómo hacerlo. Este estudio se basó, entonces, en un análisis de su evolución y de la identificación de las incongruencias e inconsistencias, en cuanto a aspectos como organización y estructura que se plantean en los planes y programas de matemáticas de bachillerato.