969 resultados para surface morphology evolution


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ultrasonic fractography and scanning electronic microscopy (SEM) are used to determine the direct relationship between the fracture surface morphology and the main crack velocity during the rapid rupture of polymethylmethacrylate (PMMA). Two critical crack velocities are found for the fracture. Quasi-parabolic markings will appear when the crack speed exceeds the first critical speed. Crack propagating at speed above the second critical speed leaves a thicket of small branches penetrating the surface behind them. Both critical speeds are functions of the thickness of the specimens.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thoroughly understanding AFM tip-surface interactions is crucial for many experimental studies and applications. It is important to realize that despite its simple appearance, the system of tip and sample surface involves multiscale interactions. In fact, the system is governed by a combination of molecular force (like the van der Waals force), its macroscopic representations (such as surface force) and gravitational force (a macroscopic force). Hence, in the system, various length scales are operative, from sub-nanoscale (at the molecular level) to the macroscopic scale. By integrating molecular forces into continuum equations, we performed a multiscale analysis and revealed the nonlocality effect between a tip and a rough solid surface and the mechanism governing liquid surface deformation and jumping. The results have several significant implications for practical applications. For instance, nonlocality may affect the measurement accuracy of surface morphology. At the critical state of liquid surface jump, the ratio of the gap between a tip and a liquid dome (delta) over the dome height (y(o)) is approximately (n-4) (for a large tip), which depends on the power law exponent n of the molecular interaction energy. These findings demonstrate that the multiscale analysis is not only useful but also necessary in the understanding of practical phenomena involving molecular forces. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

采用ZYGO MarkⅢ-GPI数字波面干涉仪、NamoScopeⅢa型原子力显微镜对不同氧分压下电子束蒸发方法制备的SiO2薄膜中的残余应力及表面形貌进行了研究,结果发现:随着氧分压的增大,薄膜中的压应力值逐渐减小,最后变为张应力状态;同时薄膜的表面粗糙度也随着氧分压的增大而逐渐增大,另外,折射率对氧分压也非常敏感,随着氧分压的增大呈现出了减小的趋势,这些现象主要是由于氧分压的改变使得SiO2薄膜结构发生了变化引起的。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Surface-architecture-controlled ZnO nanowires were grown using a vapor transport method on various ZnO buffer film coated c-plane sapphire substrates with or without Au catalysts. The ZnO nanowires that were grown showed two different types of geometric properties: corrugated ZnO nanowires having a relatively smaller diameter and a strong deep-level emission photoluminescence (PL) peak and smooth ZnO nanowires having a relatively larger diameter and a weak deep-level emission PL peak. The surface morphology and size-dependent tunable electronic transport properties of the ZnO nanowires were characterized using a nanowire field effect transistor (FET) device structure. The FETs made from smooth ZnO nanowires with a larger diameter exhibited negative threshold voltages, indicating n-channel depletion-mode behavior, whereas those made from corrugated ZnO nanowires with a smaller diameter had positive threshold voltages, indicating n-channel enhancement-mode behavior.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To form low-resistance Ohmic contact to p-type GaN, InGaN/GaN multiple quantum well light emitting diode wafers are treated with boiled aqua regia prior to Ni/Au (5 nm/5 nm) film deposition. The surface morphology of wafers and the current-voltage characteristics of fabricated light emitting diode devices are investigated. It is shown that surface treatment with boiled aqua regia could effectively remove oxide from the surface of the p-GaN layer, and reveal defect-pits whose density is almost the same as the screw dislocation density estimated by x-ray rocking curve measurement. It suggests that the metal atoms of the Ni/Au transparent electrode of light emitting diode devices may diffuse into the p-GaN layer along threading dislocation lines and form additional leakage current channels. Therefore, the surface treatment time with boiled aqua regia should not be too long so as to avoid the increase of threading dislocation-induced leakage current and the degradation of electrical properties of light emitting diodes

Relevância:

90.00% 90.00%

Publicador:

Resumo:

(110) oriented ZnO thin films were epitaxially prepared on (001) SrTiO3 single crystal substrates by a pulsed laser deposition method. The evolution of structure, surface morphology, and electrical conductivity of ZnO films was investigated on changing the growth temperature. Two domain configurations with 90 degrees rotation to each other in the film plane were found to exist to reduce the lattice mismatch between the films and substrates. In the measured temperature range between 80 K and 300 K, the electrical conductivity can be perfectly fitted by a formula of a (T) = sigma(0) + aT(b/2). implying that the electron-phonon scattering might have a significant contribution to the conductivity. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We grow In-GaAs quantum dot (QD) at low growth rate with 70 times insertion of growth interruption in MBE system. It is found that because of the extreme growth condition, QDs exhibit a thick wetting layer, large QD height value and special surface morphology which is attributed to the In segregation effect. Temperature dependence of photoluminescence measurement shows that this kind of QDs has a good thermal stability which is explained in terms of a "group coupling" model put forward by us. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dilute magnetic nonpolar GaN films with a Curie temperature above room temperature have been fabricated by implanting Mn ions into unintentionally doped nonpolar a-plane (1 1 (2) over bar 0) GaN films and a subsequent rapid thermal annealing (RTA) process. The impact of the implantation and RTA on the structure and morphology of the nonpolar GaN films is studied in this paper. The scanning electron microscopy analysis shows that the RTA process can effectively recover the implantation-indUced damage to the surface morphology of the sample. The X-ray diffraction and micro-Raman scattering spectroscopy analyses show that the RTA process can just partially recover the implantation-induced crystal deterioration. Therefore, the quality of the Mn-implanted nonpolar GaN films should be improved further for the application in spintronic devices. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigate effects of nitridation on AIN morphology, structural properties and stress. It is found that 3 min nitridation can prominently improve AIN crystal structure, and slightly smooth the surface morphology. However, 10 min nitridation degrades out-of-plane crystal structure and surface morphology instead. Additionally, 3-min nitridation introduces more tensile stress (1.5 GPa) in AIN films, which can be attributed to the weaker islands 2D coalescent. Nitridation for 10 min can introduce more defects, or even forms polycrystallinity interlayer, which relaxes the stress. Thus, the stress in AIN with 10 min nitridation decreases to -0.2 GPa compressive stress.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigate the development of cross-hatch grid surface morphology in growing mismatched layers and its effect on ordering growth of quantum dots (QDs). For a 60degrees dislocation (MD), the effective part in strain relaxation is the part with the Burgers vector parallel to the film/substrate interface within its b(edge) component; so the surface stress over a MD is asymmetric. When the strained layer is relatively thin, the surface morphology is cross-hatch grid with asymmetric ridges and valleys. When the strained layer is relatively thick, the ridges become nearly symmetrical, and the dislocations and the ridges inclined-aligned. In the following growth of InAs, QDs prefer to nucleate on top of the ridges. By selecting ultra-thin In0.15Ga0.85As layer (50nm) and controlling the QDs layer at just formed QDs, we obtained ordered InAs QDs. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The chemical properties of AlxGa1-xN surfaces exposed to air for different time periods are investigated by atomic force microscopy (AFM), photoluminescence (PL) measurement and X-ray photoelectron spectroscopy (XPS). PL and AFM results show that AlxGa1-xN samples exhibit different surface characteristics for different air-exposure times and Al contents. The XPS spectra of the Al 2p and Ga 2p core levels indicate that the peaks shifted slightly, from an Al-N to an Al-O bond and from a Ga-N to a Ga-O bond. All of these results show that the epilayer surface contains a large amount of Ga and Al oxides. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We grow InGaAs quantum dot (QD) at low growth rate with 70 times insertion of growth interruption in MBE system. It is found that because of the extreme growth condition, QDs exhibit a thick wetting layer, large QD height value and special surface morphology which is attributed to the enhanced adatom surface diffusion and In-segregation effect. Temperature dependence of photoluminescence measurement from surface QD shows that this kind of QD has good thermal stability which is explained in terms of the presence of surface oxide. The special distribution of QD may also play a role in this thermal character. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Morphology evolution of high-index GaAs(331)A surfaces during molecular beam epitaxy (MBE) growth has been investigated in order to achieve regularly distributed step-array templates and fabricate spatially ordered low-dimensional nano-structures. Atomic force microscope (AFM) measurements have shown that the step height and terrace width of GaAs layers increase monotonically with increasing substrate temperature. By using the step arrays formed on GaAs(331)A surfaces as the templates, we have fabricated highly ordered InGaAs nanowires. The improved homogeneity and the increased density of the InGaAs nanowires are attributed to the modulated strain field caused by vertical multi-stacking, as well as the effect of corrugated surface of the template. Photoluminescence (PL) tests confirmed remarkable polarization anisotropy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The structural evolution and temperature dependence of the Schottky barrier heights of Pt contacts on n-GaN epilayer at various annealing temperatures were investigated extensively by Rutherford backscattering spectrometry, x-ray diffraction measurements, Auger electron spectroscopy, scanning electron microscopy and current-voltage measurements. The temperature dependence of the Schottky barrier heights may be attributed to changes of surface morphology of Pt films on the surface and variation of nonstoichiometric defects at the interface vicinity. Experimental results indicated the degradation of Pt contacts on n-GaN above 600 degreesC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Passivation and low temperature method was carried out to grow InGaN/GaN quantum dots (QDs). Atomic force microscope observations were performed to investigate the evolution of the surface morphology of the InGaN QDs superlattices with increasing the superlattices layer number. The result shows that the size of the QDs increases with increasing superlattices layer number. The QDs height and diameter increase from 18 and 50 run for the monolayer InGaN QDs to 37 and 80 urn for the four-stacked InGaN QDs layers, respectively. This result is considered to be due to the stress field from the sub-layer dots. (C) 2003 Elsevier Science B.V. All rights reserved.