997 resultados para PL spectra
Resumo:
In this paper, we investigated the self-assembled quantum dots formed on (100) and (N11)B (N = 2, 3, 4, 5) InP substrates by molecular beam epitaxy (MBE). Two kinds of ternary QDs (In0.9Ga0.1As and In0.9Al0.1As QDs) are grown on the above substrates; Transmission electron microscopy (TEM) and photoluminescence (PL) results confirm QDs formation for all samples. The PL spectra reveal obvious differences in integral luminescence, peak position, full-width at half-maximum and peak shape between different oriented surfaces. Highest PL integral intensity is observed from QDs on (411)B surfaces, which shows a potential for improving the optical properties of QDs by using high-index surface. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Large blueshift and linewidth increase in photoluminescence (PL) spectra of InAs quantum dots (QD's) in n-i-p-i GaAs superlattice were observed. By increasing the excitation intensity from 0.5 to 32 W/cm(2), the PL peak position blueshifted 18 meV, and the linewidth increased by 20 meV. Such large changes are due to the state-filling effects of the QD's resulted from the separation of photogenerated electrons and holes caused by the doping potential.
Resumo:
InAs self-organized quantum dots (QDs) grown on annealed low temperature GaAs (LT-GaAs) epi-layer were investigated by transmission electron microscopy (TEM) and photoluminescence (PL) measurement. TEM showed that QDs formed on annealed LT-GaAs epi-layer have a smaller size and a higher density than QDs formed on normal GaAs buffer layer. In addition, the PL spectra analysis showed that the LT-GaAs epi-layer resulted in a blue shift in peak energy, and a narrower linewidth in the PL peak. The differences were attributed to the point defects and As precipitates in annealed LT-GaAs epi-layer for the point defects and As precipitates change the strain field of the surface. The results provide a method to improve the uniformity and change the energy band structure of the QDs by controlling the defects in the LT-GaAs epi-layer.
Resumo:
The hole effective-mass Hamiltonian for the semiconductors of wurtzite structure is established, and the effective-mass parameters of GaN and AlxGa1-xN are given. Besides the asymmetry in the z and x, y directions, the linear term of the momentum operator in the Hamiltonian is essential in determining the valence band structure, which is different from that of the zinc-blende structure. The binding energies of acceptor states are calculated by solving strictly the effective-mass equations. The binding energies of donor and acceptor for wurtzite GaN are 20 and 131, 97 meV, respectively, which are inconsistent with the recent experimental results. It is proposed that there are two kinds of acceptors in wurtzite GaN. One kind is the general acceptor such as C, substituting N, which satisfies the effective-mass theory, and the other includes Mg, Zn, Cd etc., the binding energy of which deviates from that given by the effective-mass theory. Experimentally, wurtzite GaN was grown by the MBE method, and the PL spectra were measured. Three main peaks are assigned to the DA transitions from the two kinds of acceptor. Some of the transitions were identified as coming from the cubic phase of GaN, which appears randomly within the predominantly hexagonal material. The binding energy of acceptor in ALN is about 239, 158 meV, that in AlxGa1-xN alloys (x approximate to 0.2) is 147, 111 meV, close to that in GaN. (C) 2000 Published by Elsevier Science S.A. All rights reserved.
Resumo:
We have studied the optical and structural properties of InAs/GaAs QDs covered by InxGa1-xAs (0 less than or equal to x less than or equal to 0.3) layer using transmission electron microscopy, photoluminescence (PL) spectra and atomic force microscopy. We find that the strain reduces in the growth direction of InAs islands covered by InGaAs instead of GaAs layer. Significant redshift of PL peak energy and narrowing of PL linewidth are observed for the InAs QDs covered by 3 nm thick InGaAs layer. In addition, atomic force microscopy measurements indicate that the InGaAs islands will nucleate on top of InAs quantum dots, when 3 nm In0.3Ga0.7As overgrowth layer is deposited. This result can well explain the PL intensify degradation and linewidth increment of quantum dots with a higher In-mole-fraction InGaAs layer. The energy gap change of InAs QDs covered by InGaAs may be explained in terms of reducing strain, suppressing compositional mixing and increasing island height. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
We have investigated the temperature dependence of the photoluminescence (PL) spectrum of self-organized InAs/GaAs quantum dots. A distinctive double-peak feature of the PL spectra from quantum dots has been observed, and a bimodal distribution of dot sizes has also been confirmed by scanning tunneling microscopy image for uncapped sample. The power-dependent PL study demonstrates that the distinctive PL emission peaks are associated with the ground-state emission of islands in different size branches. The temperature-dependent PL study shows that the PL quenching temperature for different dot families is different. Due to lacking of the couple between quantum dots, an unusual temperature dependence of the linewidth and peak energy of the dot ensemble photoluminescence has not been observed. In addition, we have tuned the emission wavelength of InAs QDs to 1.3 mu m at room temperature.
Resumo:
The pressure behaviour of In0.55Al0.45As/Al0.5Ga0.5As self-assembled quantum dots (QDs) has been studied at 15 K in the pressure range of 0-1.3 GPa. The atomic force microscopy image shows that the QDs have a multi-modal distribution in size. Three emission peaks were observed in the photoluminescence (PL) spectra, corresponding to the different QD families. The measured pressure coefficients are 82, 93 and 98 meV GPa(-1) for QDs with average lateral size of 26, 52 and 62 nm, respectively. The pressure coefficient of small QDs is about 17% smaller than that of bulk In0.55Al0.45As An envelope-function calculation was used to analyse the effect of pressure-induced change of barrier height, effective mass and dot size on the pressure coefficients of QDs. The Gamma-X state mixing was also included in the evaluation of the reduction of the pressure coefficients. The results indicate that both the pressure-induced increase of effective mass and Gamma-X mixing respond to the decrease of pressure coefficients, and the Gamma-X mixing is more important for small dots. The calculated Gamma-X interaction potentials are 15 and 10 meV for QDs with lateral size of 26 and 52 nm, respectively. A type-II alignment for the X conduction band is suggested according to the pressure dependence of the PL intensities. The valence-band offset was then estimated as 0.15 +/- 0.02.
Resumo:
In this work we report the optical and microscopic properties of self-organized InAs/GaAs quantum dots grown by molecular beam epitaxy on (1 0 0) oriented GaAs substrates. A distinctive double-peak feature of the PL spectra from quantum dots has been observed, and a bimodal distribution of dot sizes has also been confirmed by scanning tunneling microscopy (STM) image for uncapped sample. The power-dependent photoluminescence (PL) study demonstrates that the distinctive PL emission peaks are associated with the ground-state emission of islands in different size branches. The temperature-dependent PL study shows that the PL quenching temperature for different dot families is different. It is shown that the coupling between quantum dots plays a key role in unusual temperature dependence of QD photoluminescence. In addition, we have tuned the emission wavelength of InAs QDs to 1.3 mu m at room temperature. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
We reported the optical properties of self-assembled In0.55Al0.45As quantum dots grown by molecular beam epitaxy on (001) and (n11)A/B(n = 3,5)GaAs substrates. Two peaks were observed in the photoluminescence (PL) spectra from quantum dots in the (001) substrate and this suggested two sets of quantum dots different in size. For quantum dots in the high-index substrates, the PL spectra were related to the atomic-terminated surface (A or B substrate). The peaks for the B substrate surfaces were in the lower energy position than that for the (001) and A type. In addition, quantum dots in the B substrate have comparatively high quantum efficiency. These results suggested that high-index B-type substrate is more suitable for the fabrication of quantum dots than (001) and A-type substrates at the same growth condition. (C) 2000 American Vacuum Society. [S0734-211X(00)04701-6].
Resumo:
After capping InAs islands with a thin enough GaAs layer, growth interruption has been introduced. Ejected energy of self-organized InAs/GaAs quantum dots has been successfully tuned in a controlled manner by changing the thickness of GaAs capping layer and the time of growth interruption and InAs layer thickness. The photoluminescence (PL) spectra showing the shift of the peak position reveals the tuning of the electronic states of the QD system. Enhanced uniformity of Quantum dots is observed judging from the decrease of full width at half maximum of FL. Injection InAs/GaAs quantum dot lasers have been fabricated and performed on various frequencies. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
Resumo:
The effect of Si overgrowth on the structural and luminescence properties of strained Ge layer grown on Si(1 0 0) is studied. Capping Si leads to the dissolution of Ge island apex and reduced island height. The structural changes in island shape, especially in chemical composition during Si overgrowth have a large effect on the PL properties. The integrated PL intensity of Ge layer increases and there are large blue shifts in peak energies after capping Si. The PL spectra from buried Ge layer are consistent with type-II band alignment in SiGe/Si. We show that the PL properties from buried Ge layer may be tailored by modifying the cap layer growth conditions as well as post-growth annealing. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Photoluminescence (PL) spectroscopy and carrier lifetime measurement has been used to characterize optical properties of defects in the low-temperature (LT) grown GaAs/AlGaAs multiple quantum well structures. Two sets of samples were grown at 400 degrees C by molecular beam epitaxy on nominal (001) and miscut [4 degrees off (001) towards (111) A] GaAs substrates, respectively. After growth, samples were subjected to 30 s rapid thermal annealing at 600-800 degrees C. It is found that after annealing, two defect-related PL features appear in the samples grown on nominal (001) GaAs substrates, but not in those grown on miscut (001) GaAs substrates. The carrier lifetimes are about 31 and 5 ps in as-grown samples grown on nominal and miscut (001) GaAs substrates, respectively. The different PL spectra and carrier lifetimes in two sets of samples are attributed to different structures of the As-Ga-like defects formed during LT growth. (C) 1999 American Institute of Physics. [S0003-6951(99)00230-2].
Resumo:
Cubic GaN was grown on GaAs(100) by low pressure metal organic chemical vapor deposition (MOCVD). X-ray diffraction, scanning electron microscope (SEM) and photoluminescence (PL) spectra were performed to characterize the quality of the GaN film. The PL spectra of cubic GaN thin films being thicker than 1.5 mu m were reported. Triple-crystal diffraction to analyze orientation distributions and strain of the thin films was also demonstrated.
Resumo:
Red-emitting at about 640 nm from self-assembled In0.55Al0.45As/Al0.5Ga0.5As quantum dots grown on GaAs substrate by molecular beam epitaxy are demonstrated, A double-peak structure of photoluminescence (PL) spectra from quantum dots was observed, and a bimodal distribution of dot sizes was also confirmed by an atomic force micrograph (AFM) image for uncapped sample. From the temperature and excitation intensity dependence of PL spectra, it is found that the double-peak structure of PL spectra from quantum dots is strongly correlated to the two predominant quantum dot families. Taking into account the quantum-size effect on the peak energy, it is proposed that the high (low) energy peak results from a smaller (larger) dot family, and this result is identical to the statistical distribution of dot lateral size from the AFM image.
Resumo:
Red-emission at similar to 640 nm from self-assembled In0.55Al0.45As/Al0.5Ga0.5As quantum dots grown on GaAs substrate by molecular beam epitaxy (MBE) has been demonstrated. We obtained a double-peak structure of photoluminescence (PL) spectra from quantum dots. An atomic force micrograph (AFM) image for uncapped sample also shows a bimodal distribution of dot sizes. From the temperature and excitation intensity dependence of PL spectra, we found that the double-peak structure of PL spectra from quantum dots was strongly correlated to the two predominant quantum dot families. Taking into account quantum-size effect on the peak energy, we propose that the high (low) energy peak results from a smaller (larger) dot family, and this result is identical with the statistical distribution of dot lateral size from the AFM image.