471 resultados para RIEMANNIAN MANIFOLDS
Resumo:
Sparse coding aims to find a more compact representation based on a set of dictionary atoms. A well-known technique looking at 2D sparsity is the low rank representation (LRR). However, in many computer vision applications, data often originate from a manifold, which is equipped with some Riemannian geometry. In this case, the existing LRR becomes inappropriate for modeling and incorporating the intrinsic geometry of the manifold that is potentially important and critical to applications. In this paper, we generalize the LRR over the Euclidean space to the LRR model over a specific Rimannian manifold—the manifold of symmetric positive matrices (SPD). Experiments on several computer vision datasets showcase its noise robustness and superior performance on classification and segmentation compared with state-of-the-art approaches.
Resumo:
We consider Anosov actions of R(k), k >= 2, on a closed connected orientable manifold M, of codimension one, i.e. such that the unstable foliation associated to some element of R(k) has dimension one. We prove that if the ambient manifold has dimension greater than k + 2, then the action is topologically transitive. This generalizes a result of Verjovsky for codimension-one Anosov flows.
Resumo:
We provide an affirmative answer to the C(r)-Closing Lemma, r >= 2, for a large class of flows defined on every closed surface.
Resumo:
We study the geometry of 3-manifolds generically embedded in R(n) by means of the analysis of the singularities of the distance-squared and height functions on them. We describe the local structure of the discriminant (associated to the distribution of asymptotic directions), the ridges and the flat ridges.
Resumo:
Given a compact manifold X, a continuous function g : X -> IR, and a map T : X -> X, we study properties of the T-invariant Borel probability measures that maximize the integral of g. We show that if X is a n-dimensional connected Riemaniann manifold, with n >= 2, then the set of homeomorphisms for which there is a maximizing measure supported on a periodic orbit is meager. We also show that, if X is the circle, then the ""topological size"" of the set of endomorphisms for which there are g maximizing measures with support on a periodic orbit depends on properties of the function g. In particular, if g is C(1), it has interior points.
Resumo:
In this paper we study n-dimensional complete spacelike submanifolds with constant normalized scalar curvature immersed in semi-Riemannian space forms. By extending Cheng-Yau`s technique to these ambients, we obtain results to such submanifolds satisfying certain conditions on both the squared norm of the second fundamental form and the mean curvature. We also characterize compact non-negatively curved submanifolds in De Sitter space of index p.
Resumo:
A classical theorem of H. Hopf asserts that a closed connected smooth manifold admits a nowhere vanishing vector field if and only if its Euler characteristic is zero. R. Brown generalized Hopf`s result to topological manifolds, replacing vector fields with path fields. In this note, we give an equivariant analog of Brown`s theorem for locally smooth G-manifolds where G is a finite group.
Resumo:
In this paper we prove the existence of closed geodesics in the leaf space of some classes of singular Riemannian foliations (s.r.f.), namely s.r.fs. that admit sections or have no horizontal conjugate points. We also investigate the shortening process with respect to Riemannian foliations.
Resumo:
Following the lines of Bott in (Commun Pure Appl Math 9:171-206, 1956), we study the Morse index of the iterates of a closed geodesic in stationary Lorentzian manifolds, or, more generally, of a closed Lorentzian geodesic that admits a timelike periodic Jacobi field. Given one such closed geodesic gamma, we prove the existence of a locally constant integer valued map Lambda(gamma) on the unit circle with the property that the Morse index of the iterated gamma(N) is equal, up to a correction term epsilon(gamma) is an element of {0,1}, to the sum of the values of Lambda(gamma) at the N-th roots of unity. The discontinuities of Lambda(gamma) occur at a finite number of points of the unit circle, that are special eigenvalues of the linearized Poincare map of gamma. We discuss some applications of the theory.
Resumo:
Following the lines of the celebrated Riemannian result of Gromoll and Meyer, we use infinite dimensional equivariant Morse theory to establish the existence of infinitely many geometrically distinct closed geodesics in a class of globally hyperbolic stationary Lorentzian manifolds.
Resumo:
We prove an existence result for local and global G-structure preserving affine immersions between affine manifolds. Several examples are discussed in the context of Riemannian and semi-Riemannian geometry, including the case of isometric immersions into Lie groups endowed with a left-invariant metric, and the case of isometric immersions into products of space forms.
Resumo:
We prove the semi-Riemannian bumpy metric theorem using equivariant variational genericity. The theorem states that, on a given compact manifold M, the set of semi-Riemannian metrics that admit only nondegenerate closed geodesics is generic relatively to the C(k)-topology, k=2, ..., infinity, in the set of metrics of a given index on M. A higher-order genericity Riemannian result of Klingenberg and Takens is extended to semi-Riemannian geometry.
Resumo:
We study the geometry and the periodic geodesics of a compact Lorentzian manifold that has a Killing vector field which is timelike somewhere. Using a compactness argument for subgroups of the isometry group, we prove the existence of one timelike non self-intersecting periodic geodesic. If the Killing vector field is nowhere vanishing, then there are at least two distinct periodic geodesics; as a special case, compact stationary manifolds have at least two periodic timelike geodesics. We also discuss some properties of the topology of such manifolds. In particular, we show that a compact manifold M admits a Lorentzian metric with a nowhere vanishing Killing vector field which is timelike somewhere if and only if M admits a smooth circle action without fixed points.
Resumo:
Given an oriented Riemannian surface (Sigma, g), its tangent bundle T Sigma enjoys a natural pseudo-Kahler structure, that is the combination of a complex structure 2, a pseudo-metric G with neutral signature and a symplectic structure Omega. We give a local classification of those surfaces of T Sigma which are both Lagrangian with respect to Omega and minimal with respect to G. We first show that if g is non-flat, the only such surfaces are affine normal bundles over geodesics. In the flat case there is, in contrast, a large set of Lagrangian minimal surfaces, which is described explicitly. As an application, we show that motions of surfaces in R(3) or R(1)(3) induce Hamiltonian motions of their normal congruences, which are Lagrangian surfaces in TS(2) or TH(2) respectively. We relate the area of the congruence to a second-order functional F = f root H(2) - K dA on the original surface. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Let F be a singular Riemannian foliation on a compact Riemannian manifold M. By successive blow-ups along the strata of F we construct a regular Riemannian foliation (F) over cap on a compact Riemannian manifold (M) over cap and a desingularization map (rho) over cap : (M) over cap -> M that projects leaves of (F) over cap into leaves of F. This result generalizes a previous result due to Molino for the particular case of a singular Riemannian foliation whose leaves were the closure of leaves of a regular Riemannian foliation. We also prove that, if the leaves of F are compact, then, for each small epsilon > 0, we can find (M) over cap and (F) over cap so that the desingularization map induces an epsilon-isometry between M/F and (M) over cap/(F) over cap. This implies in particular that the space of leaves M/F is a Gromov-Hausdorff limit of a sequence of Riemannian orbifolds {((M) over cap (n)/(F) over cap (n))}.