SUPPORT OF MAXIMIZING MEASURES FOR TYPICAL C(0) DYNAMICS ON COMPACT MANIFOLDS


Autoria(s): ADDAS-ZANATA, Salvador; TAL, Fabio A.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2010

Resumo

Given a compact manifold X, a continuous function g : X -> IR, and a map T : X -> X, we study properties of the T-invariant Borel probability measures that maximize the integral of g. We show that if X is a n-dimensional connected Riemaniann manifold, with n >= 2, then the set of homeomorphisms for which there is a maximizing measure supported on a periodic orbit is meager. We also show that, if X is the circle, then the ""topological size"" of the set of endomorphisms for which there are g maximizing measures with support on a periodic orbit depends on properties of the function g. In particular, if g is C(1), it has interior points.

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

CNPq[301485/03-8]

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

CNPq[304360/05-8]

Identificador

DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, v.26, n.3, p.795-804, 2010

1078-0947

http://producao.usp.br/handle/BDPI/30553

10.3934/dcds.2010.26.795

http://dx.doi.org/10.3934/dcds.2010.26.795

Idioma(s)

eng

Publicador

AMER INST MATHEMATICAL SCIENCES

Relação

Discrete and Continuous Dynamical Systems

Direitos

restrictedAccess

Copyright AMER INST MATHEMATICAL SCIENCES

Palavras-Chave #periodic orbits #ergodic optimization #maximizing measures #Mathematics, Applied #Mathematics
Tipo

article

original article

publishedVersion