959 resultados para Poles and zeros


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

CONTEXTUALIZAÇÃO: A dor e a disfunção no complexo articular do ombro é comumente encontrada na prática fisioterapêutica. Essas anormalidades musculoesqueléticas estão relacionadas à instabilidade e inadequado funcionamento cinemático, que dependem da integridade dos tecidos musculares. Assim, no sentido de prevenir e reabilitar esses sintomas, o uso da haste oscilatória vem sendo implantado para melhorar os resultados de técnicas cinesioterapêuticas. OBJETIVOS: Analisar a atividade eletromiográfica (EMG) dos músculos que estabilizam a articulação do ombro durante a realização de exercícios com haste oscilatória e haste não-oscilatória. MÉTODOS: Participaram do estudo 12 voluntárias com idade de 20,4±1,9 anos. Os dados EMG foram coletados nos músculos trapézio superior (TrS), trapézio inferior (TrI) e deltoide médio (DM) durante três diferentes exercícios realizados com haste oscilatória e haste não-oscilatória. O sinal EMG foi analisado no domínio do tempo pelo cálculo do Root Mean Square (RMS). Os valores de RMS foram normalizados pelo valor de pico obtido em todas as tentativas por cada músculo. A análise estatística foi feita com os testes ANOVA para medidas repetidas e post-hoc de Bonferroni. RESULTADOS: A atividade EMG dos músculos TrS, TrI e DM foi significativamente maior nos exercícios com haste oscilatória do que com haste não-oscilatória (todos p<0,001). Não foram significativas as diferenças na ativação desses músculos entre os exercícios. CONCLUSÃO: Os resultados do presente estudo indicaram que a haste oscilatória requisitou maior atividade EMG dos músculos do ombro e, assim, pode ser um instrumento útil no treinamento desses músculos.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: Hand-held flexible poles which are brought into oscillation to cause alternating forces on trunk, are advocated as training devices that are supposed to solicit increased levels of stabilizing trunk muscle activity. The aim of this study was to verify this claim by comparing electromyographic (EMG) activity of trunk muscles during exercises performed with a flexible pole and a rigid pole.Methods: Twelve healthy females performed three different exercises with flexible and rigid poles. EMG activity of iliocostalis lumborum (IL), multifidus (MU), rectus abdominis (RA), external oblique (EO) and internal oblique (IO), and was continuously measured. The EMG signals were analyzed in time domain by calculation of the Root Mean Square (RMS) amplitudes over 250 ms windows. The mean RMS-values over time were normalized by the maximum RMS obtained for each muscle.Results: The IO showed a 72% greater EMG activity during the exercises performed with the flexible pole than with the rigid pole (p = 0.035). In exercises performed in standing, the IO was significantly more active than when sitting (p = 0.006).Conclusion: As intended, the cyclic forces induced by the oscillating pole did increase trunk muscle activation. However, the effect was limited and significant for the IO muscle only.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Let C-n(lambda)(x), n = 0, 1,..., lambda > -1/2, be the ultraspherical (Gegenbauer) polynomials, orthogonal. in (-1, 1) with respect to the weight function (1 - x(2))(lambda-1/2). Denote by X-nk(lambda), k = 1,....,n, the zeros of C-n(lambda)(x) enumerated in decreasing order. In this short note, we prove that, for any n is an element of N, the product (lambda + 1)(3/2)x(n1)(lambda) is a convex function of lambda if lambda greater than or equal to 0. The result is applied to obtain some inequalities for the largest zeros of C-n(lambda)(x). If X-nk(alpha), k = 1,...,n, are the zeros of Laguerre polynomial L-n(alpha)(x), also enumerated in decreasing order, we prove that x(n1)(lambda)/(alpha + 1) is a convex function of alpha for alpha > - 1. (C) 2002 Published by Elsevier B.V. B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, sharp upper limit for the zeros of the ultraspherical polynomials are obtained via a result of Obrechkoff and certain explicit connection coefficients for these polynomials. As a consequence, sharp bounds for the zeros of the Hermite polynomials are obtained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is well known and easy to see that the zeros of both the associated polynomial and the derivative of an orthogonal polynomial p(n)(x) interlace with the zeros of p(n)(x) itself. The natural question of how these zeros interlace is under discussion. We give a sufficient condition for the mutual location of kth, 1 less than or equal to k less than or equal to n - 1, zeros of the associated polynomial and the derivative of an orthogonal polynomial in terms of inequalities for the corresponding Cotes numbers. Applications to the zeros of the associated polynomials and the derivatives of the classical orthogonal polynomials are provided. Various inequalities for zeros of higher order associated polynomials and higher order derivatives of orthogonal polynomials are proved. The results involve both classical and discrete orthogonal polynomials, where, in the discrete case, the differential operator is substituted by the difference operator. (C) 2001 IMACS. Published by Elsevier B.V. B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vertex corrections are taken into account in the Schwinger-Dyson equation for the nucleon propagator in a relativistic field theory of fermions and mesons. The usual Hartree-Fock approximation for the nucleon propagator is known to produce the appearance of complex (ghost) poles which violate basic theorems of quantum field theory. In a theory with vector mesons there are vertex corrections that produce a strongly damped vertex function in the ultraviolet. One set of such corrections is known as the Sudakov form factor in quantum electrodynamics. When the Sudakov form factor generated by massive neutral vector mesons is included in the Hartree-Fock approximation to the Schwinger-Dyson equation for the nucleon propagator, the ghost poles disappear and consistency with basic requirements of quantum field theory is recovered.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Complex mass poles, or ghost poles, are present in the Hartree-Fock solution of the Schwinger-Dyson equation for the nucleon propagator in renormalizable models with Yukawa-type meson-nucleon couplings, as shown many years ago by Brown, Puff and Wilets (BPW), These ghosts violate basic theorems of quantum field theory and their origin is related to the ultraviolet behavior of the model interactions, Recently, Krein et.al, proved that the ghosts disappear when vertex corrections are included in a self-consistent way, softening the interaction sufficiently in the ultraviolet region. In previous studies of pi N scattering using ''dressed'' nucleon propagator and bare vertices, did by Nutt and Wilets in the 70's (NW), it was found that if these poles are explicitly included, the value of the isospin-even amplitude A((+)) is satisfied within 20% at threshold. The absence of a theoretical explanation for the ghosts and the lack of chiral symmetry in these previous studies led us to re-investigate the subject using the approach of the linear sigma-model and study the interplay of low-energy theorems for pi N scattering and ghost poles. For bare interaction vertices we find that ghosts are present in this model as well and that the A((+)) value is badly described, As a first approach to remove these complex poles, we dress the vertices with phenomenological form factors and a reasonable agreement with experiment is achieved, In order to fix the two cutoff parameters, we use the A((+)) value for the chiral limit (m(pi) --> 0) and the experimental value of the isoscalar scattering length, Finally, we test our model by calculating the phase shifts for the S waves and we find a good agreement at threshold. (C) 1997 Elsevier B.V. B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We carry out a numerical and analytic analysis of the Yang-Lee zeros of the ID Blume-Capel model with periodic boundary conditions and its generalization on Feynman diagrams for which we include sums over all connected and nonconnected rings for a given number of spins. In both cases, for a specific range of the parameters, the zeros originally on the unit circle are shown to depart from it as we increase the temperature beyond some limit. The curve of zeros can bifurcate- and become two disjoint arcs as in the 2D case. We also show that in the thermodynamic limit the zeros of both Blume-Capel models on the static (connected ring) and on the dynamical (Feynman diagrams) lattice tend to overlap. In the special case of the 1D Ising model on Feynman diagrams we can prove for arbitrary number of spins that the Yang-Lee zeros must be on the unit circle. The proof is based on a property of the zeros of Legendre polynomials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A systematic procedure of zero placement to design control systems is proposed. A state feedback controller with vector gain K is used to perform the pole placement. An estimator with vector gain L is also designed for output feedback control. A new systematic method of zero assignment to reduce the effect of the undesirable poles of the plant and also to increase the velocity error constant is presented. The methodology places the zeros in a specific region and it is based on Linear Matrix Inequalities (LMIs) framework, which is a new approach to solve this problem. Three examples illustrate the effectiveness of the proposed method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we analyze the location of the zeros of polynomials orthogonal with respect to the inner product where α >-1, N ≥ 0, and j ∈ N. In particular, we focus our attention on their interlacing properties with respect to the zeros of Laguerre polynomials as well as on the monotonicity of each individual zero in terms of the mass N. Finally, we give necessary and sufficient conditions in terms of N in order for the least zero of any Laguerre-Sobolev-type orthogonal polynomial to be negative. © 2011 American Mathematical Society.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study polynomials which satisfy the same recurrence relation as the Szego{double acute} polynomials, however, with the restriction that the (reflection) coefficients in the recurrence are larger than one in modulus. Para-orthogonal polynomials that follow from these Szego{double acute} polynomials are also considered. With positive values for the reflection coefficients, zeros of the Szego{double acute} polynomials, para-orthogonal polynomials and associated quadrature rules are also studied. Finally, again with positive values for the reflection coefficients, interlacing properties of the Szego{double acute} polynomials and polynomials arising from canonical spectral transformations are obtained. © 2012 American Mathematical Society.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The class of hypergeometric polynomials F12(-m,b;b+b̄;1-z) with respect to the parameter b=λ+iη, where λ>0, are known to have all their zeros simple and exactly on the unit circle |z|=1. In this note we look at some of the associated extremal and orthogonal properties on the unit circle and on the interval (-1,1). We also give the associated Gaussian type quadrature formulas. © 2012 IMACS.