SZEGO and PARA-ORTHOGONAL POLYNOMIALS on THE REAL LINE: ZEROS and CANONICAL SPECTRAL TRANSFORMATIONS


Autoria(s): Castillo, Kenier; Lamblem, Regina Litz; Rafaeli, Fernando Rodrigo; Ranga, Alagacone Sri
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

01/10/2012

Resumo

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Processo FAPESP: 09/13832-9

We study polynomials which satisfy the same recurrence relation as the Szego polynomials, however, with the restriction that the (reflection) coefficients in the recurrence are larger than one in modulus. Para-orthogonal polynomials that follow from these Szego polynomials are also considered. With positive values for the reflection coefficients, zeros of the Szego polynomials, para-orthogonal polynomials and associated quadrature rules are also studied. Finally, again with positive values for the reflection coefficients, interlacing properties of the Szego polynomials and polynomials arising from canonical spectral transformations are obtained.

Formato

2229-2249

Identificador

http://www.ams.org/journals/mcom/2012-81-280/S0025-5718-2012-02593-2/

Mathematics of Computation. Providence: Amer Mathematical Soc, v. 81, n. 280, p. 2229-2249, 2012.

0025-5718

http://hdl.handle.net/11449/40946

WOS:000309315200013

Idioma(s)

eng

Publicador

Amer Mathematical Soc

Relação

Mathematics of Computation

Direitos

closedAccess

Palavras-Chave #Szegö polynomials #Para-orthogonal polynomials #reflection coefficients #canonical spectral transformations
Tipo

info:eu-repo/semantics/article