SZEGO and PARA-ORTHOGONAL POLYNOMIALS on THE REAL LINE: ZEROS and CANONICAL SPECTRAL TRANSFORMATIONS
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
20/05/2014
20/05/2014
01/10/2012
|
Resumo |
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Processo FAPESP: 09/13832-9 We study polynomials which satisfy the same recurrence relation as the Szego polynomials, however, with the restriction that the (reflection) coefficients in the recurrence are larger than one in modulus. Para-orthogonal polynomials that follow from these Szego polynomials are also considered. With positive values for the reflection coefficients, zeros of the Szego polynomials, para-orthogonal polynomials and associated quadrature rules are also studied. Finally, again with positive values for the reflection coefficients, interlacing properties of the Szego polynomials and polynomials arising from canonical spectral transformations are obtained. |
Formato |
2229-2249 |
Identificador |
http://www.ams.org/journals/mcom/2012-81-280/S0025-5718-2012-02593-2/ Mathematics of Computation. Providence: Amer Mathematical Soc, v. 81, n. 280, p. 2229-2249, 2012. 0025-5718 http://hdl.handle.net/11449/40946 WOS:000309315200013 |
Idioma(s) |
eng |
Publicador |
Amer Mathematical Soc |
Relação |
Mathematics of Computation |
Direitos |
closedAccess |
Palavras-Chave | #Szegö polynomials #Para-orthogonal polynomials #reflection coefficients #canonical spectral transformations |
Tipo |
info:eu-repo/semantics/article |