Convexity of the extreme zeros of Gegenbauer and Laguerre polynomials
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
20/05/2014
20/05/2014
01/04/2003
|
Resumo |
Let C-n(lambda)(x), n = 0, 1,..., lambda > -1/2, be the ultraspherical (Gegenbauer) polynomials, orthogonal. in (-1, 1) with respect to the weight function (1 - x(2))(lambda-1/2). Denote by X-nk(lambda), k = 1,....,n, the zeros of C-n(lambda)(x) enumerated in decreasing order. In this short note, we prove that, for any n is an element of N, the product (lambda + 1)(3/2)x(n1)(lambda) is a convex function of lambda if lambda greater than or equal to 0. The result is applied to obtain some inequalities for the largest zeros of C-n(lambda)(x). If X-nk(alpha), k = 1,...,n, are the zeros of Laguerre polynomial L-n(alpha)(x), also enumerated in decreasing order, we prove that x(n1)(lambda)/(alpha + 1) is a convex function of alpha for alpha > - 1. (C) 2002 Published by Elsevier B.V. B.V. |
Formato |
171-180 |
Identificador |
http://dx.doi.org/10.1016/S0377-0427(02)00645-3 Journal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 153, n. 1-2, p. 171-180, 2003. 0377-0427 http://hdl.handle.net/11449/21697 10.1016/S0377-0427(02)00645-3 WOS:000181888700017 WOS000181888700017.pdf |
Idioma(s) |
eng |
Publicador |
Elsevier B.V. |
Relação |
Journal of Computational and Applied Mathematics |
Direitos |
openAccess |
Palavras-Chave | #ultraspherical polynomials #Laguerre polynomials #zeros #convexity #monotonicity |
Tipo |
info:eu-repo/semantics/article |