Convexity of the extreme zeros of Gegenbauer and Laguerre polynomials


Autoria(s): Dimitrov, D. K.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

01/04/2003

Resumo

Let C-n(lambda)(x), n = 0, 1,..., lambda > -1/2, be the ultraspherical (Gegenbauer) polynomials, orthogonal. in (-1, 1) with respect to the weight function (1 - x(2))(lambda-1/2). Denote by X-nk(lambda), k = 1,....,n, the zeros of C-n(lambda)(x) enumerated in decreasing order. In this short note, we prove that, for any n is an element of N, the product (lambda + 1)(3/2)x(n1)(lambda) is a convex function of lambda if lambda greater than or equal to 0. The result is applied to obtain some inequalities for the largest zeros of C-n(lambda)(x). If X-nk(alpha), k = 1,...,n, are the zeros of Laguerre polynomial L-n(alpha)(x), also enumerated in decreasing order, we prove that x(n1)(lambda)/(alpha + 1) is a convex function of alpha for alpha > - 1. (C) 2002 Published by Elsevier B.V. B.V.

Formato

171-180

Identificador

http://dx.doi.org/10.1016/S0377-0427(02)00645-3

Journal of Computational and Applied Mathematics. Amsterdam: Elsevier B.V., v. 153, n. 1-2, p. 171-180, 2003.

0377-0427

http://hdl.handle.net/11449/21697

10.1016/S0377-0427(02)00645-3

WOS:000181888700017

WOS000181888700017.pdf

Idioma(s)

eng

Publicador

Elsevier B.V.

Relação

Journal of Computational and Applied Mathematics

Direitos

openAccess

Palavras-Chave #ultraspherical polynomials #Laguerre polynomials #zeros #convexity #monotonicity
Tipo

info:eu-repo/semantics/article