Monotonicity and asymptotics of zeros of Laguerre-Sobolev-type orthogonal polynomials of higher order derivatives


Autoria(s): Marcellán, Francisco; Rafaeli, Fernando R.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

27/05/2014

27/05/2014

01/11/2011

Resumo

In this paper we analyze the location of the zeros of polynomials orthogonal with respect to the inner product where α >-1, N ≥ 0, and j ∈ N. In particular, we focus our attention on their interlacing properties with respect to the zeros of Laguerre polynomials as well as on the monotonicity of each individual zero in terms of the mass N. Finally, we give necessary and sufficient conditions in terms of N in order for the least zero of any Laguerre-Sobolev-type orthogonal polynomial to be negative. © 2011 American Mathematical Society.

Formato

3929-3936

Identificador

http://dx.doi.org/10.1090/S0002-9939-2011-10806-2

Proceedings of the American Mathematical Society, v. 139, n. 11, p. 3929-3936, 2011.

0002-9939

http://hdl.handle.net/11449/72771

10.1090/S0002-9939-2011-10806-2

2-s2.0-79960792219

2-s2.0-79960792219.pdf

Idioma(s)

eng

Relação

Proceedings of the American Mathematical Society

Direitos

openAccess

Palavras-Chave #Asymptotics #Interlacing #Laguerre orthogonal polynomials #Laguerre-Sobolev-type orthogonal polynomials #Monotonicity #Zeros
Tipo

info:eu-repo/semantics/article