982 resultados para Metallorganic chemical vapor deposition
Resumo:
In this work, the influences of CCl4 on the metalorganic chemical vapor deposition (MOCVD) growth of InN were studied for the first time. It was found that the addition of CCl4 can effectively suppress the formation of metal indium (In) droplets during InN growth, which was ascribed to the etching effect of Cl to In. However, with increasing of CCl4 flow, the InN growth rate decreased but the lateral growth of InN islands was enhanced. This provides a possibility of promoting islands coalescence toward a smooth surface of the InN film by MOCVD. The influence of addition of CCl4 on the electrical properties was also investigated.
Resumo:
The effects of annealing on the optical properties of InAs/GaAs quantum dots (QDs) grown under different conditions by metalorganic chemical vapor deposition (MOCVD) are studied. A lower QD growth rate leads to an earlier and faster decrease of QD photoluminescence (PL) intensity with increasing annealing temperature. which is proposed to be related to the increased QD two-dimensional (2D)-three-dimensional (3D) transition critical layer thickness at low QD growth rate. High-quality GaAs cap layers grown at high temperature and a low deposition rate are shown to decrease the blueshift of the QDs' emission wavelength significantly during in-situ I h annealing experiments, which is important for the fabrication of long-wavelength InAs/GaAs QD lasers by MOCVD technique. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Well-aligned Zn1-xMgxO nanorods and film with Mg-content x from 0 to 0.051 have been successfully synthesized by metal organic chemical vapor deposition (MOCVD) without any catalysts. The characterization results showed that the diameters and lengths of the nanorods were in the range of 20-80 nm and 330-360 nm, which possessed wurtzite structure with a c-axis growth direction. As the increase of Mg precursor flows into the growth chamber, the morphology of Zn1-xMgxO evolves from nanorods to a film with scale-like surface and the height of the nanorods and the film was almost identical, it is suggested that the growth rate along the c-axis was hardly changed while the growth of six equivalent facets of the type {1 0 (1) over bar 0} of the Zn1-xMgxO has been improved. Photoluminescence and Raman spectra show that the products have a good crystal quality with few oxygen vacancies. With the Mg incorporation, multiple-phonon scattering become weak and broad, and the intensities of all observed vibrational modes decrease. And the ultraviolet near-band-edge emission shows a clear blueshift (x=0.051, as much as 90 meV) and slightly broadening compared with that of pure ZnO nanorods. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We have investigated the optical properties of AlGaN grown on sapphire. It is found that two main luminescence peaks occur in the cathodoluminescence (CL) spectra of AlGaN films, and their energy separation increases with the increase of Al source flux during the growth. Spatially resolved CL investigations have shown that the line splitting is a result of variation of AlN mole fraction within the layer. The Al composition varies in both lateral and vertical direction. It is suggested that the difference in the surface mobility of Al and Ga atoms, especially, its strong influence on the initial island coalescence process and the formation of island-like regions on the uneven film surface, is responsible for the Al composition inhomogeneity. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The defect evolution and its correlation with electrical properties of GaN films grown by metalorganic chemical vapor deposition are investigated. It is found that the dislocation density decreases gradually during the growth process, and the dislocation reduction rate in the island coalescence process is especially rapid. The changes in electron mobility of GaN with the increase of growth time are mainly dependent on the dislocations acting as scattering centers. Furthermore, the variation of carrier concentration in GaN may be related with the point defects and their clusters. The quality of GaN could be improved by suitably increasing the film thickness. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The GaN-rich side of GaNP ternary alloys has been successfully synthesized by light-radiation heating and low-pressure metal-organic chemical vapor deposition. X-ray diffraction (XRD) rocking curves show that the ( 0002) peak of GaNP shifts to a smaller angle with increasing P content. From the GaNP photoluminescence (PL) spectra, the red shifts from the band-edge emission of GaN are determined to be 73, 78 and 100 meV, respectively, in the GaNP alloys with the P contents of 1.5%, 5.5% and 7.5%. No PL peak or XRD peak related to GaP is observed, indicating that phase separation induced by the short-range distribution of GaP-rich regions in the GaNP layer has been effectively suppressed. The phase-separation suppression in the GaNP layer is associated with the high growth rate and the quick cooling rate under the given growth conditions, which can efficiently restrain the accumulation of P atoms in the GaNP layer.
Resumo:
The in situ optical reflectivity measurements are employed to monitor the GaN epilayer growth process above low-temperature AlN buffer layer on c-plane sapphire substrate by metalorganic chemical vapor deposition. It is found that the lateral growth of GaN islands and their coalescence is promoted in the initial growth stage if the AlN buffer layer is treated with a long annealing time and has an optimal thickness: As confirmed by atomic force microscopy observations, the quality of GaN epilayers is closely dependent on the surface morphology of AlN buffer layer, especially the grain size and nuclei density after the annealing treatment. (C) 2004 American Institute of Physics.
Resumo:
Multilayer InGaN/GaN quantum dots (QDs) were grown on sapphire substrates through a three-dimensional growth mode, which was initiated by a special passivation processing introduced into the normal growth procedure. Surface morphology and photoluminescence properties of QDs with different stacking periods (from one to four) were investigated. The temperature dependences of the PL peak energies were found to show a great difference between two-layer and three-layer QDs. The fast redshift and the reversed sigmoidal temperature dependences of the PL energies for the former were attributed to the thermally activated carrier transfer from small to large dots. However, the increase of both the dot size and the spatial space among dots with the growing stacking periods reduced the carrier escape and retrapping. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The effects of deposition gas pressure and H-2 dilution ratio (H-2/SiH4+CH4+H-2), generally considered two of dominant parameters determining crystallinity in beta-SiC thin films prepared by catalytic chemical vapor deposition (Cat-CVD), often called hot-wire CVD method, on the films properties have been systematically studied. As deposition gas pressure increase from 40 to 1000 Pa, the crystallinity of the films is improved. From the study of H-2 dilution ratio, it is considered that H-2 plays a role as etching gas and modulating the phases in beta-SiC thin films. On the basis of the study on the parameters, nanocrystalline beta-SiC films were successfully synthesized on Si substrate at a low temperature of 300degreesC. The Fourier Transform Infrared Spectroscopy (FTIR) and X-ray diffraction (XRD) spectra show formation of beta-SiC. Moreover, according to Sherrer equation, the average grain size of the films estimated is in nanometer-size. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Si nanoquantum dots have been formed by self-assembled growth on the both Si-O-Si and Si-OH bonds terminated SiO2 surfaces using the low-pressure chemical vapor deposition (LPCVD) and surface thermal decomposition of pure SiH4 gas. We have experimentally studied the variation of Si. dot density with Si-OH bonds density, deposition temperature and SiH4 pressure, and analyzed qualitatively the formation mechanism of the Si nanoquantum dots based on LPCVD surface thermal dynamics principle. The results are very. important for the control of the density and size of Si nanoquantum dots, and have potential applications in the new quantum devices.
Resumo:
A two-hot-boat chemical vapor deposition system was modified from a thermal evaporation equipment. This system has the advantage of high vacuum, rapid heating rate and temperature separately controlled boats for the source and samples. These are in favor of synthesizing compound semiconducting nano-materials. By the system, we have synthesized high-quality wurtzite single crystal GaN nanowires and nanotip triangle pyramids via an in-situ doping indium surfactant technique on Si and 3C-SiC epilayer/Si substrates. The products were analyzed by x-ray diffraction, field emission scanning electron microscopy, highresolution transmission electron microscopy, energy- dispersive x-ray spectroscopy, and photoluminescence measurements. The GaN nanotip triangle pyramids, synthesized with this novel method, have potential application in electronic/ photonic devices for field-emission and laser.
Resumo:
A new method is demonstrated to be effective in reducing mismatch-induced tensile stress and suppressing the formation of cracks by inserting InAlGaN interlayers during the growth of GaN upon Si (1 1 1) substrate. Compared with GaN film without quaternary interlayer, GaN layer grown on InAlGaN compliant layers shows a five times brighter integrated PL intensity and a (0 0 0 2) High-resolution X-ray diffraction (HRXRD) curve width of 18 arcmin. Its chi(min), derived from Rutherford backscattering spectrometry (RBS), is about 2.0%, which means that the crystalline quality of this layer is very good. Quaternary InAlGaN layers, which are used as buffer layers firstly, can play a compliant role to endure the large mismatch-induced stress and reduce cracks during the growth of GaN epitaxy. The mechanisms leading to crack density reduction are investigated and results show that the phase immiscibility and the weak In-N bond make interlayer to offer tenability in the lattice parameters and release the thermal stress. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Crack-free In0.08Al0.25Ga0.67N quaternary films, with and without thick (> 1.5 mum) high-temperature-GaN (HTGaN) interlayer, have been grown on Si(1 1 1) substrates by a low-pressure metalorganic chemical vapor deposition (MOCVD) system. Mole fractions of In and Al in quaternary alloy layers are determined by Energy dispersive spectroscopy (EDS) and Rutherford backscattering spectrometry (RBS), which are recorded as similar to8% and similar to25-27%, respectively. High-resolution X-ray diffraction (HRXRD) and room temperature photoluminescence (RT-PL) results evidence the film's single crystal structure and the existence of local In- and/or Al-rich regions. Compared with GaN film grwon on Si(1 1 1) substrate, no crack is observed in the quaternary ones. Two explanations are proposed. First, mismatch-induced strain is relaxed significantly due to gradual changes of In concentration. Second, the weak In-N bond is likely to break when the sample is cooled down to the room temperature, which is expected to favor the releasing of thermal stress. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Boron-doped ( B-doped) silicon nanowires have been successfully synthesized by plasma-enhanced chemical vapor deposition (PECVD) at 440degreesC using silane as the Si source, diborane( B2H6) as the dopant gas and An as the catalyst. It is desirable to extend this technique to the growth of silicon nanowire pn junctions because PECVD enables immense chemical reactivity.
Resumo:
The epitaxial growth of AlxGa1-xN film with high Al content by metalorganic chemical vapor deposition (MOCVD) has been accomplished. The resulting Al content was determined to be 54% by high resolution X-ray diffraction (HRXRD) and Vegard's law. The full width at half maximum (FWHM) of the AlGaN (0002) HRXRD rocking curve was about 597 arcsec. Atomic force microscopy (AFM) image showed a relatively rough surface with grain-like islands, mainly coming from the low surface mobility of adsorbed Alspecies. From transmittance measurement, the cut-off wavelength was around 280 nm and Fabry-Perot fringes were clearly visible in the transmission region. Cathodoluminescence (CL) measurement indicated that there existed a uniformity in the growth direction and a non-uniformity in the lateral direction. (C) 2007 Elsevier Ltd. All rights reserved.