979 resultados para JUSTO, AGUSTIN P.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogenated nanocrystalline silicon (nc-Si:H) n-layers have been used to prepare heterojunction solar cells on flat p-type crystalline silicon (c-Si) wafers. The nc-Si:H n-layers were deposited by radio-frequency (RF) plasma enhanced chemical vapor deposition (PECVD), and characterized using Raman spectroscopy, optical transmittance and activation energy of dark-conductivity. The nc-Si:H n-layers obtained comprise fine grained nanocrystallites embedded in amorphous matrix, which have a wider bandgap and a smaller activation energy. Heterojunction solar cells incorporated with the nc-Si n-layer were fabricated using configuration of Ag (100 nm)/1T0 (80 nm)/n-nc-Si:H (15 nm)/buffer a-Si:H/p-c-Si (300 mu m)/Al (200 nm), where a very thin intrinsic a-Si:H buffer layer was used to passivate the p-c-Si surface, followed by a hydrogen plasma treatment prior to the deposition of the thin nanocrystalline layer. The results show that heterojunction solar cells subjected to these surface treatments exhibit a remarkable increase in the efficiency, up to 14.1% on an area of 2.43 cm(2). (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Indium tin oxide/Si-rich SiO2/p-Si structured devices are fabricated to study the electroluminescence (EL) of the Si-rich SiO2 (SRO) material. The obvious peaks at similar to 1050nm and similar to 1260nm in the EL are ascribed to localized state transitions of amorphous Si (alpha-Si) clusters. The EL afterglow associated with alpha-Si clusters is observed from this structure at room temperature, while the afterglow is absent in the case of optical pumping. It is believed that carrier-induced defects act as trap centres in the alpha-Si clusters, resulting in the EL afterglow. The phenomenon of the EL afterglow indicates the limits of EL performance and electrical modulation of the SRO material with a larger fraction of alpha-Si clusters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Valence-band type Auger lines in Al doped and undoped ZnO were comparatively studied with the corresponding core level x-ray photoelectron spectrography (XPS) spectra as references. Then the shift trend of energy levels in the valence band was that p and p-s-d states move upwards but e and p-d states downwards with increasing Al concentration. The decreased energy of the Zn 3d state is larger than the increased energy of the 0 2p state, indicating the lowering of total energy. This may indicate that Al doping could induce the enhancement of p-d coupling in ZnO, which originates from stronger Al-O hybridization. The shifts of these states and the mechanism were confirmed by valence band XPS spectra and 0 K-edge x-ray absorption spectrography (XAS) spectra. Finally, some previously reported phenomena are explained based on the Al doping induced enhancement of p-d coupling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P-doped ZnO films were deposited on n-Si substrate by radio-frequency magnetron sputtering. Hall measurements revealed that the films annealed in situ at 750 degrees C in an oxygen ambient at a pressure of 1.3x10(-3)-3.9x10(-3) Pa showed p-type behavior with a hole concentration of 2.7x10(16)-2.2x10(17) cm(-3), a mobility of 4-13 cm(2)/V s, and a resistivity of 10.4-19.3 Omega cm. Films annealed at 750 degrees C in a vacuum or in oxygen ambient at higher pressures (5.2x10(-3) and 6.5x10(-3) Pa) showed n-type behavior. Additionally, the p-ZnO/n-Si heterojunction showed a diodelike I-V characteristic. Our results indicate that P-doped p-type ZnO films can be obtained by annealing in oxygen ambient at very low pressures. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The origin of spurious solutions in the eight-band envelope function model is examined and it is shown that spurious solutions arise from the additional spurious degeneracies caused by the unphysical bowing of the conduction bands calculated within the eight-band k center dot p model. We propose two approaches to eliminate these spurious solutions. Using the first approach, the wave vector cutoff method, we demonstrate the origin and elimination of spurious solutions in a transparent way without modifying the original Hamiltonian. Through the second approach, we introduce some freedom in modifying the Hamiltonian. The comparison between the results from the various modified Hamiltonians suggests that the wave vector cutoff method can give accurate enough description to the final results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogenated nanocrystalline silicon (nc-Si:H) layers of boron-doped increasing step by step was deposited on n-type crystalline silicon substrate using Plasma Enhanced Chemical Vapor Deposition (PECVD) system. After evaporating Ohm contact electrode on the side of substrate and on the side of nc-Si:H film, a structure of electrode/ (p)nc-Si:H/(n)c-Si/electrode was obtained. It is confirmed by electrical measurement such as I-V curve, C-V curve and DLTS that this is a variable capacitance diode. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GaN1-xPx ternary alloys with high P compositions were deposited on sapphire substrates by means of metal-organic chemical vapor deposition. Depth profiles of the elements indicate that the maximum P/N composition ratio is about 17% and a uniform distribution of the P atoms in the alloys is achieved. 2theta/omega XRD spectra demonstrate that the (0002) peak of the GaN1-xPx alloys shifts to smaller angle with increasing P composition. From the photoluminescence (PL) spectra, the red shifts to the bandedge emission of GaN are determined to be 73, 78, 100 and 87 meV for the GaN1-xPx alloys with the P/N composition ratios of 3%, 11%, 15% and 17%, respectively. No PL peak related to GaP is observed, indicating that the phase separation between GaN and GaP is well suppressed in our GaN1-xPx samples. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the impact of a wide bandgap p-type hydrogenated nanocrystalline silicon (nc-Si:H) on the performances of hydrogenated amorphous silicon (a-Si:H) based solar cells. The player consists of nanometer-sized Si crystallites and has a wide effective bandgap determined mainly by the quantum size-confinement effect (QSE). By incorporation of this p-layer into the devices we have obtained high performances of a-Si:H top solar cells with V-infinity=1.045 V and FF=70.3 %, and much improved mid and bottom a-SiGe:H cells, deposited on stainless steel (SS) substrate. The effects of the band-edge mismatch at the p/i-interface on the I-V characteristics of the solar cells arc discussed on the bases of the density-functional approach and the AMPS model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deep centers of high electron mobility transistor (HEMT) and pseudomorphic-HEMT (P-HEMT) functional materials of ultra-high-speed microstructures grown by MBE are investigated using deep level transient spectroscopy (DLTS) technique. DLTS spectra demonstrate that midgap states, having larger concentrations and capture cross sections, are measured in n-AlGaAs layers of HEMT and P-HEMT structures. These states may correlate strongly with oxygen content of n-AlGaAs layer. At the same time, one can observe that the movement of DX center is related to silicon impurity that is induced by the strain in AlGaAs layer of the mismatched AlGaAs/InGaAs/GaAs system of P-HEMT structure. The experimental results also show that DLTS technique may be a tool of optimization design of the practical devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SiO2/Si/SiO2 nanometer double barriers (SSSNDB) with Si layers of twenty-seven different thicknesses in a range of 1-5 nm with an interval of 0.2 nm have been deposited on p-Si substrates using two-target alternative magnetron sputtering. Electroluminescence (EL) from the semitransparent Au film/SSSNDB/p-Si diodes and from a control diode without any Si layer have been observed under forward bias. Each EL spectrum of all these diodes can be fitted by two Gaussian bands with peak energies of 1.82 and 2.25 eV, and full widths at half maximum of 0.38 and 0.69 eV, respectively. It is found that the current, EL peak wavelength and intensities of the two Gaussian bands of the Au/SSSNDB/p-Si structure oscillate synchronously with increasing Si layer thickness with a period corresponding to half a de Broglie wavelength of the carriers. The experimental results strongly indicate that the EL originates mainly from two types of luminescence centres with energies of 1.82 and 2.25 eV in the SiO2 barriers, rather than from the nanometer Si well in the SSSNDB. The EL mechanism is discussed in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphor-doped nano-crystalline silicon ((n))nc-Si:H) films are successfully grown on the p-type (100) oriented crystal silicon ((p) c-Si) substrate by conventional plasma-enhanced chemical vapor deposition method. The films are obtained using high H-2 diluted SiH4 as a reaction gas source and using PH3 as the doping gas source of phosphor atoms. Futhermore, the heterojunction diodes are also fabricated by using (n)nc-Si:H films and (p)c-Si substrate. I-V properties are investigated in the temperature range of 230-420K. The experimental results domenstrate that (n)nc-Si:H/(p) c-Si heterojunction is a typical abrupt heterojunction having good rectifing and temperature properties. Carrier transport mechanisms are tunneling - recombination model at forward bias voltages. In the range of low bias voltages ( V-F< 0.8 V), the current is determined by recombination at the (n)nc-Si:H side of the space charge region, while the current becomes tunneing at higher bias voltages( V-F>1.0 V). The present heterojunction has high reverse breakdown voltage ( > - 75 V) and low reverse current (approximate to nA).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogenated amorphous silicon films co-doped with oxygen (O), boron (B) and phosphorus (P) were fabricated using PECVD technique. The erbium (Er) implanted samples were annealed in a N-2 ambient by rapid thermal annealing. Strong photoluminescence (PL) spectra of these samples were observed at room temperature. The incorporation of O, B and P could not only enhance the PL intensity but also the thermal annealing temperature of the strongest PL intensity. It seems that the incorporation of B or P can decrease the grain boundary potential barriers thus leading to an easier movement of carriers and a stronger PL intensity. Temperature dependence of PL indicated the thermal quenching of Er-doped hydrogenated amorphous silicon is very weak.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both the photoluminescence peaks corresponding to the vertical transitions and the nonvertical transitions in an n-i-p-i GaAs superlattice are clearly observed. The redshifts of the two peaks with increasing temperature are: discussed in terms of the temperature-dependent carrier separation effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large blueshift and linewidth increase in photoluminescence (PL) spectra of InAs quantum dots (QD's) in n-i-p-i GaAs superlattice were observed. By increasing the excitation intensity from 0.5 to 32 W/cm(2), the PL peak position blueshifted 18 meV, and the linewidth increased by 20 meV. Such large changes are due to the state-filling effects of the QD's resulted from the separation of photogenerated electrons and holes caused by the doping potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical properties of InAs quantum dots in n-i-p-i GaAs superlattices are investigated by photoluminescence (PL) characterization. We have observed an anomalously large blueshift of the PL peak and increase of the PL linewidth with increasing excitation intensity, much smaller PL intensity decrease, and faster PL peak redshift with increasing temperature as compared to conventional InAs quantum dots embedded in intrinsic GaAs barriers. The observed phenomena can all be attributed to the filling effects of the spatially separated photogenerated carriers. (C) 2000 American Institute of Physics. [S0003-6951(00)03515-4].