958 resultados para porous material


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the material growth and fabrication of high-performance 980-nm strained quantum-well lasers employing a hybrid material system consisting of an Al-free InGaAs-InGaAsP active region and AlGaAs cladding layers. The use of AlGaAs cladding instead of InGaP provides potential advantages in flexibility of laser design, simple epitaxial growth, and improvement of surface morphology and laser performance. The as-grown InGaAs-InGaAsP(1.6 eV)-AlGaAs(1.95 eV) lasers achieve a low threshold current density of 150 A/cm(2) (at a cavity length of 1500 mu m), internal quantum efficiency of similar to 95%, and low internal loss of 1.8 cm(-1). Both broad-area and ridge-waveguide laser devices are fabricated. For 100-mu m-wide stripe lasers with a cavity length of 800 Irm, a slope efficiency of 1.05 W/A and a characteristic temperature coefficient (T-0) of 230 K are achieved. The lifetime test demonstrates a reliable performance. The comparison with our fabricated InGaAs-InGaAsP(1.6 eV)-AlGaAs(1.87 eV) lasers and Al-free InGaAs-InGaAsP (1.6 eV)-InGaP lasers are also given and discussed. The selective etching between AlGaAs and InGaAsP is successfully used for the formation of a ridge-waveguide structure. For 4-mu m-wide ridge-waveguide laser devices, a maximum output power of 350 mW is achieved. The fundamental mode output power can be up to 190 mW with a slope efficiency as high as 0.94 W/A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiation-induced electrical changes in both space charge region (SCR) of Si detectors and bulk material (BM) have been studied for samples of diodes and resistors made on Si materials with different initial resistivities. The space charge sign inversion fluence (Phi(inv)) has been found to increase linearly with the initial doping concentration (the reciprocal of the resistivity), which gives improved radiation hardness to Si detectors fabricated from low resistivity material. The resistivity of the BM, on the other hand, has been observed to increase with the neutron fluence and approach a saturation value in the order of hundreds k Omega cm at high fluences, independent of the initial resistivity and material type. However, the fluence (Phi(s)), at which the resistivity saturation starts, increases with the initial doping concentrations and the value of Phi(s) is in the same order of that of Phi(inv) for all resistivity samples. Improved radiation hardness can also be achieved by the manipulation of the space charge concentration (N-eff) in SCR, by selective filling and/or freezing at cryogenic temperatures the charge state of radiation-induced traps, to values that will give a much smaller full depletion voltage. Models have been proposed to explain the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pronounced photoluminescence enhancement on chemically oxidized porous silicon was induced by a series of organic cyano compounds including 1,2-dicyanoethylene (CE), 1,3-dicyanobenzene (1,3-CB), 1,4-dicyanobenzene (1,4-CB), 1-cyanonaphthalene (1-CN), and 9-cyanoanthracene (9-CA). Photoluminescence enhancement effects were reversible for all compounds studies in this work. A dependence of photoluminescence enhancement on the steric effect and the electronic characteristics of these compounds and the structure of the porous silicon substrates were analyzed in terms of the photoluminescence enhancing factors. Surface chemical composition examined by Fourier transform infrared (FTIR) spectra demonstrated that the surface Si-H bonds were not changed and no new luminescent compounds were formed on porous silicon surface during adsorption of cyano compounds. A mechanism based on induced surface states acting as radiative recombination centers by cyano compounds adsorption was suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visible photoluminescence (PL) and Raman spectra of Ge clusters embedded in porous silicon (PS) have been studied. The as-prepared sample shows redshifted and enhanced room temperature PL relative to reference PS. This result can be explained by the quantum confinement effect on excitons in Ge clusters and tunnel of excitons from Si units of the PS skeleton to Ge clusters. One year storage in dry air results in a pronounced decrease in PL intensity but blue-shifted in contrast to reference PS. This phenomenon correlates to the size decrease of macerated Ce clusters and occurrence of "quantum depletion" in Ge clusters. Consequently, only excitons in Si units contribute to PL. (C) 1998 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introducing the growth interruption between the InAs deposition and subsequent GaAs growth in self-assembled quantum dot (QD) structures, the material transport process in the InAs layers has been investigated by photoluminescence and transmission electron microscopy measurement. InAs material in structures without misfit dislocations transfers from the wetting layer to QDs corresponding to the red-shift of PL peak energy due to interruption. On the other hand, the PL peak shifts to higher energy in the structures with dislocations. In this case, the misfit dislocations would capture the InAs material from the surrounding wetting layer and coherent islands leading to the reduction of the size of these QDs. The variations in the PL intensity and Linewidth are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photoluminescence of porous silicon can be modified sensitively by surface adsorption of different kinds of molecules. A quite different effects of 9-cyanoanthracene and anthracene adsorption on the photoluminescence of porous silicon were observed. The adsorption of 9-cyanoanthracene induced the photoluminescence enhancement, while anthracene adsorption resulted in photoluminescent quenching. An explanation of the interaction of adsorbates with surface defect sites of porous silicon was suggested and discussed. (C) 1998 Elsevier Science S.A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interface state recombination effect from the quantum confinement effect in PL signals from the SRO material system was studied. The results show that the larger the size of Si NCs, the more beneficial for the interface state recombination process to surpass the quantum confinement process, in support of Qin's model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An apparent defect suppression effect has been observed in InP through an investigation of deep level defects in different semi-insulating (SI) InP materials. Quality improvement of SI-InP based on the defect suppression mechanism is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidizing thick porous silicon layer into silicon dioxide is a timesaving and low-cost process for producing thick silicon dioxide layer used in silicon-based optical waveguide devices. The solution of H2O2 is proposed to post-treat thick porous silicon (PS) films. The prepared PS layer as the cathode is applied about 10 mA/cm(2) current in mixture of ethanol, HF, and H2O2 solutions, in order to improve the stability and the smoothness of the surface. With the low-temperature dry-O-2 pre-oxidizations and high-temperature wet O-2 oxidizations process, a high-quality SiO2 30 mu m thickness layer that fit for the optical waveguide device was prepared. The SEM images show significant improved smoothness on the surface of oxidized PS thick films, the SiO2 film has a stable and uniformity reflex index that measured by the prism coupler, the uniformity of the reflex index in different place of the wafer is about 0.0003.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-ordered porous alumina films on a semi-insulated GaAs substrate were prepared in oxalic acid aqueous solutions by three-step anodization. The I-t curve of anodization process was recorded to observe time effects of anodization. Atomic force microscopy was used to investigate structure and morphology of alumina films. It was revealed that the case of oxalic acid resulted in a self-ordered porous structure, with the pore diameters of 60-70 nm, the pore density of the order of about 10(10) pore cm(-2), and interpore distances of 95-100nm. At the same time the pore size and shape change with the pore widening time. Field-enhanced dissolution model and theory of deformation relaxation combined were brought forward to be the cause of self-ordered pore structure according to I-t curve of anodization and structure characteristics of porous alumina films. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A compact polarization-insensitive 8x8 arrayed waveguide grating with 100GHz channel spacing at 1.55 mu m is presented on the material of silicon on insulator (SOI). Increasing the epitaxial layer thickness can reduce the birefringence of the waveguide, but the wvaeguide's bend radius also increases at the same time. We choose the SOI wafer with 3.0 mu m epitaxial layer to reduce the device's size and designed the appropriate structure of rib wave-guides to eliminate the polarization dependant wavelength shift. Compared to the other methods of eliminating the polarization dependant wavelength shift, the method is convenient and easy to control the polarization without additional etching process. The index differences between TE0 and TM0 of straight and bend waveguides are 1.4x10(-5) and 3.9x10(-5), respectively. The results showed that the polarization dependant wavelength shift is 0.1nm, and the device size is 1.5x1.0 cm(2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new material structure with Al0.22Ga0.78As/In0.15Ga0.85As/GaAs emitter spacer layer and GaAs/In0.15Ga0.85As/GaAs well for resonant tunneling diodes is designed and the corresponding device is fabricated. RTDs DC characteristics are measured at room temperature. Peak-to-valley current ratio (PVCR) is 7.44 for RTD Analysis on these results suggests that the material structure will be helpful to improve the quality, of RTD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a new capacitive microphone fabrication technology is proposed. It describes using the oxidized porous silicon sacrificial technology to make air gap and using KOH etching technique to make the backplate containing acoustic holes based on the principle that the heavy p(+)-doping silicon can be nearly etched in KOH solution. The innovation of the method is using oxidized porous silicon technology. The sensitivity of the fabricated microphone is from -55dB ( 1.78mV/Pa) to -45dB (5.6mV/Pa) in the frequency range of 500Hz to 25kHz. Its cut-off frequency is higher than 20kHz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A SOI thenno-optic variable optical attenuator with U-grooves based on a multimode interference coupler principle is fabricated. The dynamic attenuation range is 0 to 29 dB; at the wavelength range between 1510 nm and 1610nm, and the maximum power consumption is only l30mW. Compared to the variable optical attenuator without U-groove, the maximum power consumption decreases more than 230mW