994 resultados para ZINCBLENDE SEMICONDUCTORS
Resumo:
We discuss an open photoacoustic cell study on sulfer-doped n-type InP wafer. The thermal diffusivity of the sample is evaluated from the phase data associated with the photoacoustic signal as a function of the modulation frequency under heat transmission configuration. Analysis is made on the basis of the Rosencwaig-Gersho theory and the results are compared with those from earlier reported photoacoustic studies of semiconductors. Our investigation clearly indicates that the instantaneous thermalization process is the major heat diffusion mechanism responsible for the photoacoustic signal generation in an InP sample.
Resumo:
Laser induced transverse photothermal deflection technique has been employed to determine the thermal parameters of InP doped with Sn, S and Fe as well as intrinsic InP. The thermal diffusivity values of these various samples are evaluated from the slope of the curve plotted between the phase of photothermal deflection signal and pump-probe offset. Analysis of the data shows that heat transport and hence the thermal diffusivity value, is greatly affected by the introduction of dopant. It is also seen that the direction of heat flow with respect to the plane of cleavage of semiconductor wafers influences the thermal diffusivity value. The results are explained in terms of dominating phonon assisted heat transfer mechanism in semiconductors.
Resumo:
An open cell photoacoustic configuration has been employed to evaluate the thermal diffusivity of pure InP as well as InP doped with sulphur and iron. Chopped optical radiation at 488 nm from an Ar-ion laser has been used to excite photoacoustic signals which been detected by a sensitive electret microphone. Thermal diffusivity value have been calculated from phase versus chopping frequency plots. Doped sample are found to show a reduced value for thermal diffusivity in comparison with intrinsically pure sample. The results have been interpreted in terms of the mechanisms of heat generation and transmission in semiconductors.
Resumo:
We report a photoacoustic (PA) study of the thermal and transport properties of a GaAs epitaxial layer doped with Si at varying doping concentration, grown on GaAs substrate by molecular beam epitaxy. The data are analyzed on the basis of Rosencwaig and Gersho’s theory of the PA effect. The amplitude of the PA signal gives information about various heat generation mechanisms in semiconductors. The experimental data obtained from the measurement of the PA signal as a function of modulation frequency in a heat transmission configuration were fitted with the phase of PA signal obtained from the theoretical model evaluated by considering four parameters—viz., thermal diffusivity, diffusion coefficient, nonradiative recombination time, and surface recombination velocity—as adjustable parameters. It is seen from the analysis that the photoacoustic technique is sensitive to the changes in the surface states depend on the doping concentration. The study demonstrates the effectiveness of the photoacoustic technique as a noninvasive and nondestructive method to measure and evaluate the thermal and transport properties of epitaxial layers.
Resumo:
An open-cell configuration of the photoacoustic (PA) technique is employed to determine the thermal and transport properties of intrinsic Si and Si doped with B (p-type) and P (n-type). The experimentally obtained phase of the PA signal under heat transmission configuration is fitted to that of theoretical model by taking thermal and transport properties, namely, thermal diffusivity, diffusion coefficient, and surface recombination velocity, as adjustable parameters. It is seen from the analysis that doping and also the nature of dopant have a strong influence on the thermal and transport properties of semiconductors. The results are interpreted in terms of the carrier-assisted and phonon-assisted heat transfer mechanisms in semiconductors as well as the various scattering processes occurring in the propagation of heat carriers.
Resumo:
This work mainly concentrate to understand the optical and electrical properties of amorphous zinc tin oxide and amorphous zinc indium tin oxide thin films for TFT applications. Amorphous materials are promising in achieving better device performance on temperature sensitive substrates compared to polycrystalline materials. Most of these amorphous oxides are multicomponent and as such there exists the need for an optimized chemical composition. For this we have to make individual targets with required chemical composition to use it in conventional thin film deposition techniques like PLD and sputtering. Instead, if we use separate targets for each of the cationic element and if separately control the power during the simultaneous sputtering process, then we can change the chemical composition by simply adjusting the sputtering power. This is what is done in co-sputtering technique. Eventhough there had some reports about thin film deposition using this technique, there was no reports about the use of this technique in TFT fabrication until very recent time. Hence in this work, co-sputtering has performed as a major technique for thin film deposition and TFT fabrication. PLD were also performed as it is a relatively new technique and allows the use high oxygen pressure during deposition. This helps to control the carrier density in the channel and also favours the smooth film surface. Both these properties are crucial in TFT.Zinc tin oxide material is interesting in the sense that it does not contain costly indium. Eventhough some works were already reported in ZTO based TFTs, there was no systematic study about ZTO thin film's various optoelectronic properties from a TFT manufacturing perspective. Attempts have made to analyse the ZTO films prepared by PLD and co-sputtering. As more type of cations present in the film, chances are high to form an amorphous phase. Zinc indium tin oxide is studied as a multicomponent oxide material suitable for TFT fabrication.
Resumo:
Chaotic dynamics of directly modulated semiconductor lasers have been studied extensively over the last two decades because of their application in secure optical communication. However, chaos is generally suppressed in such systems when the nonlinear gain reduction factor is above 0.01 which is very much smaller than the reported values in semiconductors like InGaAsP. In this paper we show that by giving an optoelectronic feedback with appropriate delay one can increase the range of the values of the gain reduction factor for which chaos can be observed. Numerical studies show that negative feedback is more efficient in producing chaotic dynamics.
Resumo:
In the present work, we report the third order nonlinear optical properties of ZnO thin films deposited using self assembly, sol gel process as well as pulsed laser ablation by z scan technique. ZnO thin films clearly exhibit a negative nonlinear index of refraction at 532 nm and the observed nonlinear refraction is attributed to two photon absorption followed by free carrier absorption. Although the absolute nonlinear values for these films are comparable, there is a change in the sign of the absorptive nonlinearity of the films. The films developed by dip coating and pulsed laser ablation exhibit reverse saturable absorption whereas the self assembled film exhibits saturable absorption. These different nonlinear characteristics in the self assembled films can be mainly attributed to the saturation of linear absorption of the ZnO defect states.
Resumo:
We have investigated the third-order nonlinearity in ZnO nanocolloids with particle sizes in the range 6-18 nm by the z-scan technique. The third-order optical susceptibility χ(3) increases with increasing particle size (R) within the range of our investigations. In the weak confinement regime, an R2 dependence of χ(3) is obtained for ZnO nanocolloids. The optical limiting response is also studied against particle size.
Resumo:
In this article we present size dependent spectroscopic observations of nanocolloids of ZnO. ZnO is reported to show two emission bands, an ultraviolet (UV) emission band and another in the green region. Apart from the known band gap 380 nm and impurity 530 nm emissions, we have found some peculiar features in the fluorescence spectra that are consistent with the nanoparticle size distribution. Results show that additional emissions at 420 and 490 nm are developed with particle size. The origin of the visible band emission is discussed. The mechanism of the luminescence suggests that UV luminescence of ZnO colloid is related to the transition from conduction band edge to valence band, and visible luminescence is caused by the transition from deep donor level to valence band due to oxygen vacancies and by the transition from conduction band to deep acceptor level due to impurities and defect states. A correlation analysis between the particle size and spectroscopic observations is also discussed.
Resumo:
The primary aim of these investigations was to probe the elecnuchemical and material science aspects of some selected metal phthalocyanines(MPcs).Metal phthalocyanines are characterised by a unique planar molecular structure. As a single class of compounds they have been the subject of ever increasing number of physicochemical and technological investigations. During the last two decades the literature on these compounds was flooded by an outpour of original publications and patents. Almost every branch of materials science has benefited by their application-swface coating, printing, electrophotography, photoelectrochemistry, electronics and medicine to name a few.The present study was confined to the electrical and electrochemical properties of cobalt, nickel, zinc. iron and copper phthalocyanines. The use of soluble Pes as corrosion inhibitor for aluminium was also investigated.In the introductory section of the thesis, the work done so far on MPcs is reviewed. In this review emphasis is given to their general methods of synthesis and the physicochemical properties.In phthalocyanine chemistry one of the formidable tasks is the isolation of singular species. In the second chapter the methods of synthesis and purification are presented with necessary experimental details.The studies on plasma modified films of CoPe, FePc, ZnPc. NiPc and CuPc are also presented.Modification of electron transfer process by such films for reversible redox systems is taken as the criterion to establish enhanced electrocatalytic activity.Metal phthalocyanines are p- type semiconductors and the conductivity is enhanced by doping with iodine. The effect of doping on the activation energy of the conduction process is evaluated by measuring the temperature dependent variation of conductivity. Effect of thennal treatment on iodine doped CoPc is investigated by DSC,magnetic susceptibility, IR, ESR and electronic spectra. The elecnucatalytic activity of such doped materials was probed by cyclic voltammetry.The electron transfer mediation characteristics of MPc films depend on the film thickness. The influence of reducing the effective thickness of the MPc film by dispersing it into a conductive polymeric matrix was investigated. Tetrasulphonated cobalt phthalocyanine (CoTSP) was electrostatically immobilised into polyaniline and poly(o-toluidine) under varied conditions.The studies on corrosion inhibition of aluminium by CoTSP and CuTSP and By virtue of their anionic character they are soluble in water and are strongly adsorbed on aluminium. Hence they can act as corrosion inhibitors. CoTSP is also known to catalyze the reduction of dioxygen.This reaction can accelerate the anodic dissolution of metal as a complementary reaction. The influence of these conflicting properties of CoTSP on the corrosion of aluminium was studied and compared with those of CuTSP.In the course of these investigations a number of gadgets like cell for measuring the electrical conductivity of solids under non-isothermal conditions, low power rf oscillator and a rotating disc electrode were fabricated.
Resumo:
Màster en Nanociència i Nanotecnologia. Curs 2007-2008. Directors: Francesca Peiró i Martínez and Jordi Arbiol i Cobos
Resumo:
Mesoporous materials are of great interest to the materials community because of their potential applications for catalysis,separation of large molecules,medical implants,semiconductors,magnetoelectric devices.The thesis entitled 'Ordered Mesoporous Silica as supports for immobilization of Biocatalyst' presents how the pore size can be tuned without the loss in ordered structure for the entrapment of an industially important biocatalyst-amylase.Immobilization of enzymes on ordered mesoporous material has triggered new ooportunities for stabilizing enzymes with improved intrinsic and operational stabilities.
Resumo:
An efficient method is developed for an iterative solution of the Poisson and Schro¿dinger equations, which allows systematic studies of the properties of the electron gas in linear deep-etched quantum wires. A much simpler two-dimensional (2D) approximation is developed that accurately reproduces the results of the 3D calculations. A 2D Thomas-Fermi approximation is then derived, and shown to give a good account of average properties. Further, we prove that an analytic form due to Shikin et al. is a good approximation to the electron density given by the self-consistent methods.
Resumo:
We have carried out a systematic analysis of the transverse dipole spin response of a large-size quantum dot within time-dependent current density functional theory. Results for magnetic fields corresponding to integer filling factors are reported, as well as a comparison with the longitudinal dipole spin response. As in the two-dimensional electron gas, the spin response at high-spin magnetization is dominated by a low-energy transverse mode.