987 resultados para QUANTUM-WELL WIRES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pressure dependence of photoluminescence from ZnSe:Te-(CdSe)(1)(ZnSe)(3) short period superlattice quantum wells is reported. In addition to the exciton band from the superlattice layers, strong bands for localized excitons self-trapped al single Te (Te-1) atom, double Te atoms (Te-2) and Te clusters (Te-n, n greater than or equal to 3) as well as for the free excitons in isoelectronic Te incorporated ZnSe layers are observed. Significant differences in the pressure and temperature dependencies of the observed exciton transitions are presented and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photoluminescence (PL) spectra of GaInNAs/GaAs multiple quantum wells and GaInNAs epilayers grown on GaAs substrate show an apparent "S-shape" temperature-dependence of the of dominant luminescence peak. At low temperature and weak excitation conditions, a PL peak related to nitrogen cluster-induced bound states can be well resolved in the PL spectra. It displays a remarkable red shift of up to 60 meV and is thermally quenched below 100 K with increasing temperature, being attributed to N-cluster induced bound states. The indium incorporation exhibits significant effect on the cluster formation. The rapid thermal annealing treatment at 750 C can essentially remove the bound states-induced peak.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymorphous Si nanowires (SiNWS) have been successfully synthesized on Si wafer by plasma enhanced chemical vapor deposition (PECVD) at 440degreesC,using silane as the Si source and Au as the catalyst. To grow the polymorphous SiNWS preannealing the Si substrate with Au film at 1100 degreesC is needed. The diameters of Si nanowires range from 15 to 100 urn. The structure morphology and chemical composition of the SiNWS have been characterized by high resolution x-ray diffraction, scanning electron microscopy, transmission electron microscopy, as well as energy dispersive x-ray spectroscopy. A few interesting nanowires with Au nanoclusters uniformly distributed in the body of the wire were also produced by this technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural and optical properties of MBE-grown GaAsSb/GaAs multiple quantum wells (MQWs) as well as strain-compensated GaAsSb/GaAs/GaAsP MQWs are investigated. The results of double crystal X-ray diffraction and reciprocal space mapping show that when strain-compensated layers are introduced, the interface quality of QW structure is remarkably improved, and the MQW structure containing GaAsSb layers with a high Sb composition can be coherently grown. Due to the influence of inserted GaAsP layers on the energy band and carrier distribution of QWs, the optical properties of GaAsSb/GaAs/GaAsP MQWs display a lot of features mainly characteristic of type-I QWs despite the type-II GaAsSb/GaAs interfaces exist in the structure. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photoluminescence (PL) of strained SiGe/Si multiple quantum wells (MQW) with flat and undulated SiGe well layers was studied at different temperature. With elevated temperature from 10K, the no-phonon (NP) peak of the SiGe layers in the flat sample has firstly a blue shift due to the dominant transition converting from bound excitons (BE) to free excitons (FE), and then has a red shift when the temperature is higher than 30K because of the narrowing of the band gap. In the undulated sample, however, monotonous blue shift was observed as the temperature was elevated from 10 K to 287 K. The thermally activated electrons, confined in Si due to type-II band alignment, leak into the SiGe crest regions, and the leakage is enhanced with the elevated temperature. It results in a blue shift of the SiGe luminescence spectra.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photocurrent (PC) spectra of ZnCdSe-ZnSe double multi-quantum wells are measured at different temperature. Its corresponding photocurrent derivative (PCD) spectra are obtained by computing, and the PCD spectra have greatly enhanced the sensitivity of the relative weak PC signals. The polarization dependence of the PC spectra shows that the transitions observed in the PC spectra are heavy-hole related, and the transition energy coincide well with the results obtained by envelope function approximation including strain. The temperature dependence of the photocurrent curves indicates that the thermal activation is the dominant transport mechanism of the carriers in our samples. The concept of saturation temperature region is introduced to explain why the PC spectra have different temperature dependence in the samples with different structure parameters. It is found to be very useful in designing photovoltaic devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this report, we have investigated the temperature and injection power dependent photoluminescence in self-assembled InAs/GaAs quantum dots (QDs) systems with low and high areal density, respectively. It was found that, for the high-density samples, state filling effect and abnormal temperature dependence were interacting. In particular, the injection power-induced variations were most obvious at the temperature interval where carriers transfer from small quantum dots (SQDs) to large quantum dots (LQDs). Such interplay effects could be explained by carrier population of SQDs relative to LQDs, which could be fitted well using a thermal carrier rate equation model. On the other hand, for the low density sample, an abnormal broadening of full width at half maximum (FWHM) was observed at the 15-100 K interval. In addition, the FWHM also broadened with increasing injection power at the whole measured temperature interval. Such peculiarities of low density QDs could be attributed to the exciton dephasing processes, which is similar to the characteristic of a single quantum dot. The compared interplay effects of high-and low-density QDs reflect the difference between an interacting and isolated QDs system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transport in a semiopen Kondo- correlated quantum dot is mediated through more than one quantum state. Using the Keldysh technique and the equation of motion method, we study the shot noise S for a wide range of source- drain voltages V-sd within a model incorporating the additional states as a background continuum, demonstrating the importance of the Fano interference. In the absence of the interference, the noise is revealed to be a probe of the second moment of the local density of states, and our theory reproduces the well- known peak structure around the Kondo temperature in the S-V-sd curve. More significantly, it is found that taking account of the background transmission, the voltage dependence of the noise exhibits rich peak- dip line shapes, indicating the presence of the Fano effect. We further demonstrate that due to its two- particle nature, the noise is more sensitive to the quantum interference effect than the simple current.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shot noise through a closed Aharonov-Bohm interferometer carrying a quantum dot in one of its two current paths is investigated. It is found that the shot noise can be modulated by the magnetic flux Phi, the dot level, and the direct tunneling. Due to the interference between the two transmission channels, the Kondo correlation manifests itself in the flux dependence of the shot noise, which exhibits oscillation behavior with a period of Phi(0)/2 (Phi(0) is the flux quantum) for small voltages below the Kondo temperature T-K. At voltages well above T-K or outside the Kondo regime, the shot noise is determined by high-energy Coulomb and hybridization processes, and its Aharonov-Bohm oscillations restore the fundamental period of Phi(0). As a result of its two-particle nature, the shot noise contains higher-order harmonics absent in the current, demonstrating the fact that the noise is more sensitive to the effects of quantum interference than the current.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The theoretical model of collisional quantum interference (CQI) in intramolecular rotational energy transfer is described in an atom-diatom system, based on the first Born approximation of time-dependent perturbation theory and considering a long-range interaction potential. The relation between differential and integral interference angles is obtained. For the CO A(1)Pi (v = 0)/e(3)Sigma (-)(v = 1)-He collision system, the calculated integral interference angles are consistent with the experimental values. The physical significance of interference angle and the essential factors it depends on as well as the influence of the short-range interaction on CQI are discussed. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MF2 (M = Ca, Sr, Ba) nanocrystals (NCs) were synthesized via a solvothermal process in the presence of oleic acid and characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectra, UV/vis absorption spectra, photoluminescence (PL) excitation and emission spectra, and lifetimes, respectively. In the synthetic process, oleic acid as a surfactant played a crucial role in confining the growth and solubility of the MF2 NCs. The as-prepared CaF2, SrF2 and BaF2 NCs present morphologies of truncated octahedron, cube and sheet in a narrow distribution, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quantum yield, lifetime, and absorption spectrum of four [Ru(bpy)(2)L](+) [where bpy is 2,2'-bipyridyl; L is represented by the deprotonated form of 2-(1H-tetrazol-5-yl)pyridine (L1) or 2-(1H-tetrazol-5-yl)pyrazine (L2)], as well as their methylated complexes [Ru(bpy)(2)LMe](2+) (RuL1Me and RuL2Me) are closely ligand dependent. In this paper, density functional theory (DFT) and time-dependent DFT (TDDFT) were performed to compare the above properties among these complexes. The calculated results reveal that the replacement of pyridine by pyrazine or the attachment of a CH3 group to the tetrazolate ring greatly increases the pi-accepting ability of the ancillary ligands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sensing system based on the photoinduced electron transfer of quantum dots (QDs) was designed to measure the interaction of anticancer drug and DNA, taking mitoxantrone (MTX) as a model drug. MTX adsorbed on the surface of QDs can quench the photoluminescence (PL) of QDs through the photoinduced electron-transfer process; and then the addition of DNA will bring the restoration of QDs PL intensity, as DNA can bind with MTX and remove it from QDs. Sensitive detection of MTX with the detection limit of 10 nmol L-1 and a linear detection range from 10 nmol L-1 to 4.5 mu mol L-1 was achieved. The dependence of PL intensity on DNA amount was successfully utilized to investigate the interactions between MTX and DNA. Both the binding constants and the sizes of binding site of MTX-DNA interactions were calculated based on the equations deduced for the PL recovery process. The binding constant obtained in our experiment was generally consistent with previous reports. The sensitive and speedy detection of MTX as well as the avoidance of modification or immobilization process made this system suitable and promising in the drug-DNA interaction studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By incorporating two phosphorescent dyes, namely, iridium(III)[bis(4,6-difluorophenyl)-pyridinato-N,C-2']picolinate (Flrpic) for blue emission and bis(2-(9,9-diethyl-9H-fluoren-2-yl)-1-phenyl-1 H-benzoimidazol-N,C-3) iridium(acetylacetonate) ((fbi)(2)Ir(acac)) for orange emission, into a single-energy well-like emissive layer, an extremely high-efficiency white organic light-emitting diode (WOLED) with excellent color stability is demonstrated. This device can achieve a peak forward-viewing power efficiency of 42.5 lm W-1, corresponding to an external quantum efficiency (EQE) of 19.3% and a current efficiency of 52.8 cd A(-1). Systematic studies of the dopants, host and dopant-doped host films in terms of photophysical properties (including absorption, photoluminescence, and excitation spectra), transient photoluminescence, current density-voltage characteristics, and temperature-dependent electroluminescence spectra are subsequently performed, from which it is concluded that the emission natures of Flrpic and (fbi)(2)Ir(acac) are, respectively, host-guest energy transfer and a direct exciton formation process. These two parallel pathways serve to channel the overall excitons to both dopants, greatly reducing unfavorable energy losses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ring- and rod-shaped P4VP-b-PS-b-P4VP ( PS, polystyrene; P4VP, poly( 4-vinylpyridine)) triblock copolymer aggregates are used as templates to synthesize ZnS nanocrystals. Herein, PVP serves as both a stabilizing agent and a structure- directing agent. The resulting ZnS nanocrystals could be aligned along the corona of the copolymer aggregates in near-perfect structures through control of both the molar ratio of Zn2+ to P4VP and the reaction time. The diameter of the as-synthesized ZnS layer on the surface of polymer template is approximate 2 - 3 nm. High-resolution transmission electron microscopy images reveal that the ZnS particles are single crystal in a zinc blende structure. This method provides a simple, reproducible route at room temperature to prepare assembled hybrid polymer - semiconductor nanocrystal nanocomposites.