936 resultados para superlattice and quantum well materials


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The EER spectra of a single quantum well GaAs\AlxGa1-xAs electrode were studied as a function of applied reverse bias in ferrocene, p-methyl nitrobenzene and hydroquinone+benzoquinone non-aqueous solutions. EER spectra were compared for different redox species and showed that a pronounced quantum-confined Stark effect and a Franz-Keldysh oscillation for a single quantum well electrode were obtained in the p-methyl-nitrobenzene- and hydroquinone+benzoquinone-containing solutions. A surface interaction of the single quantum well electrode with ferrocene led to fewer changes in the electric field of the space charge layer for reverse bias; this was suggested to explain the weak quantum-confined Stark effect and Franz-Keldysh oscillation effect observed for the single quantum well electrode in the ferrocene-containing solution. (C) 1997 Elsevier Science S.A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have demonstrated a 20 period dislocation-free InGaAs/GaAs quantum dot superlattice which is self-formed by the strain from the superlattice taken as a whole rather than by the strain from the strained single layer. The island formation does not take place while growing the corresponding strained single layer. From the variation of the average dot height in each layer, the strain distribution and relaxation process in the capped superlattice have been examined. It is found that the strain is not uniformly distributed and the greatest strains occur at two interfaces between the superlattice and the substrate and the cap layer in the capped superlattice. (C) 1997 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photo-luminescence and electro-luminescence from step-graded index SiGe/Si quantum well grown by molecular beam epitaxy is reported. The SiGe/Si step-graded index quantum well structure is beneficial to the enhancing of electro-luminescence. The optical and electrical properties of this structure are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spin splitting of conduction subbands in Al_(0.3)Ga_(0.7)As/GaAs/Al_xGa_(1-x)As/Al_(0.3)Ga_(0.7)As step quantum wells induced by interface and electric field related Rashba effects is investigated theoretically by the method of finite difference. The dependence of the spin splitting on the electric field and the well structure, which is controlled by the well width and the step width, is investigated in detail. Without an external electric field, the spin splitting is induced by an in terface related Rashba term due to the built-in structure inversion asymmetry. Applying the external electric field to the step QW, the Rashba effect can be enhanced or weakened, depending on the well structure as well as the direction and the magnitude of the electric field. The spin splitting is mainly controlled by the interface related Rashba term under a negative and a stronger positive electric field, and the contribution of the electric field related Rashba term dominates in a small range of a weaker positive electric field.A method to determine the interface parameter is proposed.The results show that the step QWs might be used as spin switches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two-section offset quantum-well structure tunable laser with a tuning range of 7 nm was fabricated using offset quantum-well inethod. The distributed Bragg reflector (DBR) was realized just by selectively wet etching the multiquantum-well (MQW) layer above the quaternary lower waveguide. A threshold current of 32 mA and an output power of 9 mW at 100 mA were achieved. Furthermore, with this offset structure method, a distributed feedback (DFB) laser was integrated with an electro-absorption modulator (EAM), which was capable of producing 20 dB of optical extinction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Material growth and device fabrication of the first 1.3μm quantum well (QW) edge emitting laser diodes in China are reported. Through the optimization of the molecular beam epitaxy (MBE) growth conditions and the tuning of the indium and nitrogen composition of the GalnNAs QWs, the emission wavelengths of the QWs can be tuned to 1.3μm. Ridge geometry waveguide laser diodes are fabricated. The lasing wavelength is 1.3μm under continuous current injection at room temperature with threshold current of 1kA/cm^2 for the laser diode structures with the cleaved facet mirrors. The output light power over 30mW is obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effects of SiO2, encapsulation and rapid thermal annealing (RTA) on the optical properties of GaNAs/GaAs single quantum well (SQW) were studied by low temperature photoluminescence (PL). A blueshift of the PL peak energy for both the SiO2-capped region and the bare region was observed. The results were attributed to the nitrogen reorganization in the GaNAs/GaAs SQW. It was also shown that the nitrogen reorganization was obviously enhanced by SiO2 cap-layer. A simple model [1] was used to describe the SiO2-enhanced blueshift of the low temperature PL peak energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low threshold current and high temperature operation of 650nm AlGaInP quantum well laser diodes grown by low pressure metal organic chemical vapor deposition (LP-MOCVD) are reported in this paper. 650nm laser diodes with threshold current as low as 22-24mA at room temperature, and the operating temperature over 90 degrees C at CW output power 5 mW were achieved in this study. These lasers are stable during 72 hours burn in under 5mW at 90 degrees C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we report on the design, growth and fabrication of 980nm strained InGaAs quantum well lasers employing novel material system of Al-free active region and AlGaAs cladding layers. The use of AlGaAs cladding instead of InGaP provides potential advantages in laser structure design, improvement of surface morphology and laser performance. We demonstrate an optimized broad-waveguide structure for obtaining high power 980nm quantum well lasers with low vertical beam divergence. The laser structure was grown by low-pressure metalorganic chemical vapor deposition, which exhibit a high internal quantum efficiency of similar to 90% and a low internal loss of 1.5-2.5 cm(-1). The broad-area and ridge-waveguide laser devices are both fabricated. For 100 mu m wide stripe lasers with cavity length of 800 mu m, a low threshold current of 170mA, a high slope efficiency of 1.0W/A and high output power of more than 3.5W are achieved. The temperature dependences of the threshold current and the emitting spectra demonstrate a very high characteristic temperature coefficient (T-o) of 200-250K and a wavelength shift coefficient of 0.34nm/degrees C. For 4 mu m-width ridge waveguide structure laser devices, a maximum output power of 340mW with GOD-free thermal roll-over characteristics is obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular beam epitaxy-grown self-assembled In(Ga)As/GaAs and InAs/InAlAs/InP quantum dots (QDs) and quantum wires (QWRs) have been studied. By adjusting growth conditions, surprising alignment. preferential elongation, and pronounced sequential coalescence of dots and wires under specific condition are realized. The lateral ordering of QDs and the vertical anti-correlation of QWRs are theoretically discussed. Room-temperature (RT) continuous-wave (CW) lasing at the wavelength of 960 nm with output power of 3.6 W from both uncoated facets is achieved fi-om vertical coupled InAs/GaAs QDs ensemble. The RT threshold current density is 218 A/cm(2). A RT CW output power of 0.6 W/facet ensures at least 3570 h lasing (only drops 0.83 dB). (C) 2001 Elsevier Science B.V, All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of systematic experiments on the growth of high quality GaNAs strained layers on GaAs (001) substrate have been carried out by using DC active Nz plasma, assisted molecular beam epitaxy. The samples of GaNAs between 3 and 200 nm thick were evaluated by double crystal X-ray diffraction (XRD) and photoluminescence (PL) measurements. PL and XRD measurements for these samples are in good agreement. Some material growth and structure parameters affecting the properties of GaNAs/GaAs heterostructure were studied; they were: (1) growth temperature of GaNAs epilayer; (2) electrical current of active N-2 plasma; (3) Nz flow rate; (4) GaNAs growth rate; (5) the thickness of GaNAs strained layer. XRD and PL measurements showed that superlattice with distinct satellite peaks up to two orders and quantum well structure with intensity at 22 meV Fourier transform infrared spectroscopy (FWHM) can be achieved in molecular beam epitaxy (MBE) system. (C) 2000 Published by Elsevier Science S.A. All rights reserved.