922 resultados para Rasch measurement model
Resumo:
Our goal in this paper is to assess reliability and validity of egocentered network data using multilevel analysis (Muthen, 1989, Hox, 1993) under the multitrait-multimethod approach. The confirmatory factor analysis model for multitrait-multimethod data (Werts & Linn, 1970; Andrews, 1984) is used for our analyses. In this study we reanalyse a part of data of another study (Kogovšek et al., 2002) done on a representative sample of the inhabitants of Ljubljana. The traits used in our article are the name interpreters. We consider egocentered network data as hierarchical; therefore a multilevel analysis is required. We use Muthen's partial maximum likelihood approach, called pseudobalanced solution (Muthen, 1989, 1990, 1994) which produces estimations close to maximum likelihood for large ego sample sizes (Hox & Mass, 2001). Several analyses will be done in order to compare this multilevel analysis to classic methods of analysis such as the ones made in Kogovšek et al. (2002), who analysed the data only at group (ego) level considering averages of all alters within the ego. We show that some of the results obtained by classic methods are biased and that multilevel analysis provides more detailed information that much enriches the interpretation of reliability and validity of hierarchical data. Within and between-ego reliabilities and validities and other related quality measures are defined, computed and interpreted
Resumo:
Resumen tomado de la publicación. Monográfico titulado: economía de la educación
Resumo:
En les últimes dècades, l'increment dels nivells de radiació solar ultraviolada (UVR) que arriba a la Terra (principalment degut a la disminució d'ozó estratosfèric) juntament amb l'augment detectat en malalties relacionades amb l'exposició a la UVR, ha portat a un gran volum d'investigacions sobre la radiació solar en aquesta banda i els seus efectes en els humans. L'índex ultraviolat (UVI), que ha estat adoptat internacionalment, va ser definit amb el propòsit d'informar al públic general sobre els riscos d'exposar el cos nu a la UVR i per tal d'enviar missatges preventius. L'UVI es va definir inicialment com el valor màxim diari. No obstant, el seu ús actual s'ha ampliat i té sentit referir-se a un valor instantani o a una evolució diària del valor d'UVI mesurat, modelitzat o predit. El valor concret d'UVI està afectat per la geometria Sol-Terra, els núvols, l'ozó, els aerosols, l'altitud i l'albedo superficial. Les mesures d'UVI d'alta qualitat són essencials com a referència i per estudiar tendències a llarg termini; es necessiten també tècniques acurades de modelització per tal d'entendre els factors que afecten la UVR, per predir l'UVI i com a control de qualitat de les mesures. És d'esperar que les mesures més acurades d'UVI s'obtinguin amb espectroradiòmetres. No obstant, com que els costs d'aquests dispositius són elevats, és més habitual trobar dades d'UVI de radiòmetres eritemàtics (de fet, la majoria de les xarxes d'UVI estan equipades amb aquest tipus de sensors). Els millors resultats en modelització s'obtenen amb models de transferència radiativa de dispersió múltiple quan es coneix bé la informació d'entrada. No obstant, habitualment no es coneix informació d'entrada, com per exemple les propietats òptiques dels aerosols, la qual cosa pot portar a importants incerteses en la modelització. Sovint, s'utilitzen models més simples per aplicacions com ara la predicció d'UVI o l'elaboració de mapes d'UVI, ja que aquests són més ràpids i requereixen menys paràmetres d'entrada. Tenint en compte aquest marc de treball, l'objectiu general d'aquest estudi és analitzar l'acord al qual es pot arribar entre la mesura i la modelització d'UVI per condicions de cel sense núvols. D'aquesta manera, en aquest estudi es presenten comparacions model-mesura per diferents tècniques de modelització, diferents opcions d'entrada i per mesures d'UVI tant de radiòmetres eritemàtics com d'espectroradiòmeters. Com a conclusió general, es pot afirmar que la comparació model-mesura és molt útil per detectar limitacions i estimar incerteses tant en les modelitzacions com en les mesures. Pel que fa a la modelització, les principals limitacions que s'han trobat és la falta de coneixement de la informació d'aerosols considerada com a entrada dels models. També, s'han trobat importants diferències entre l'ozó mesurat des de satèl·lit i des de la superfície terrestre, la qual cosa pot portar a diferències importants en l'UVI modelitzat. PTUV, una nova i simple parametrització pel càlcul ràpid d'UVI per condicions de cel serens, ha estat desenvolupada en base a càlculs de transferència radiativa. La parametrització mostra una bona execució tant respecte el model base com en comparació amb diverses mesures d'UVI. PTUV ha demostrat la seva utilitat per aplicacions particulars com ara l'estudi de l'evolució anual de l'UVI per un cert lloc (Girona) i la composició de mapes d'alta resolució de valors d'UVI típics per un territori concret (Catalunya). En relació a les mesures, es constata que és molt important saber la resposta espectral dels radiòmetres eritemàtics per tal d'evitar grans incerteses a la mesura d'UVI. Aquest instruments, si estan ben caracteritzats, mostren una bona comparació amb els espectroradiòmetres d'alta qualitat en la mesura d'UVI. Les qüestions més importants respecte les mesures són la calibració i estabilitat a llarg termini. També, s'ha observat un efecte de temperatura en el PTFE, un material utilitzat en els difusors en alguns instruments, cosa que potencialment podria tenir implicacions importants en el camp experimental. Finalment, i pel que fa a les comparacions model-mesura, el millor acord s'ha trobat quan es consideren mesures d'UVI d'espectroradiòmetres d'alta qualitat i s'usen models de transferència radiativa que consideren les millors dades disponibles pel que fa als paràmetres òptics d'ozó i aerosols i els seus canvis en el temps. D'aquesta manera, l'acord pot ser tan alt dins un 0.1º% en UVI, i típicament entre menys d'un 3%. Aquest acord es veu altament deteriorat si s'ignora la informació d'aerosols i depèn de manera important del valor d'albedo de dispersió simple dels aerosols. Altres dades d'entrada del model, com ara l'albedo superficial i els perfils d'ozó i temperatura introdueixen una incertesa menor en els resultats de modelització.
Resumo:
The theta-logistic is a widely used generalisation of the logistic model of regulated biological processes which is used in particular to model population regulation. Then the parameter theta gives the shape of the relationship between per-capita population growth rate and population size. Estimation of theta from population counts is however subject to bias, particularly when there are measurement errors. Here we identify factors disposing towards accurate estimation of theta by simulation of populations regulated according to the theta-logistic model. Factors investigated were measurement error, environmental perturbation and length of time series. Large measurement errors bias estimates of theta towards zero. Where estimated theta is close to zero, the estimated annual return rate may help resolve whether this is due to bias. Environmental perturbations help yield unbiased estimates of theta. Where environmental perturbations are large, estimates of theta are likely to be reliable even when measurement errors are also large. By contrast where the environment is relatively constant, unbiased estimates of theta can only be obtained if populations are counted precisely Our results have practical conclusions for the design of long-term population surveys. Estimation of the precision of population counts would be valuable, and could be achieved in practice by repeating counts in at least some years. Increasing the length of time series beyond ten or 20 years yields only small benefits. if populations are measured with appropriate accuracy, given the level of environmental perturbation, unbiased estimates can be obtained from relatively short censuses. These conclusions are optimistic for estimation of theta. (C) 2008 Elsevier B.V All rights reserved.
Resumo:
The relationship between acrylamide and its precursors, namely, free asparagine and reducing sugars, was studied in cakes made from potato flake, wholemeal wheat, and wholemeal rye, cooked at 180 degreesC, from 5 to 60 min. Between 5 and 20 min, major losses of asparagine, water, and total reducing sugars were accompanied by large increases in acrylamide, which maximized in all three products between 25 and 30 min, followed by a slow linear reduction. Acrylamide formation did not occur to a large degree until the moisture contents of the cakes fell below 5%. Linear relationships were observed for acrylamide formation with the residual levels of asparagine and reducing sugars for all three food materials.
Resumo:
Mesospheric temperature inversions are well established observed phenomena, yet their properties remain the subject of ongoing research. Comparisons between Rayleigh-scatter lidar temperature measurements obtained by the University of Western Ontario's Purple Crow Lidar (42.9°N, 81.4°W) and the Canadian Middle Atmosphere Model are used to quantify the statistics of inversions. In both model and measurements, inversions occur most frequently in the winter and exhibit an average amplitude of ∼10 K. The model exhibits virtually no inversions in the summer, while the measurements show a strongly reduced frequency of occurrence with an amplitude about half that in the winter. A simple theory of mesospheric inversions based on wave saturation is developed, with no adjustable parameters. It predicts that the environmental lapse rate must be less than half the adiabatic lapse rate for an inversion to form, and it predicts the ratio of the inversion amplitude and thickness as a function of environmental lapse rate. Comparison of this prediction to the actual amplitude/thickness ratio using the lidar measurements shows good agreement between theory and measurements.
Resumo:
The concentrations of sulfate, black carbon (BC) and other aerosols in the Arctic are characterized by high values in late winter and spring (so-called Arctic Haze) and low values in summer. Models have long been struggling to capture this seasonality and especially the high concentrations associated with Arctic Haze. In this study, we evaluate sulfate and BC concentrations from eleven different models driven with the same emission inventory against a comprehensive pan-Arctic measurement data set over a time period of 2 years (2008–2009). The set of models consisted of one Lagrangian particle dispersion model, four chemistry transport models (CTMs), one atmospheric chemistry-weather forecast model and five chemistry climate models (CCMs), of which two were nudged to meteorological analyses and three were running freely. The measurement data set consisted of surface measurements of equivalent BC (eBC) from five stations (Alert, Barrow, Pallas, Tiksi and Zeppelin), elemental carbon (EC) from Station Nord and Alert and aircraft measurements of refractory BC (rBC) from six different campaigns. We find that the models generally captured the measured eBC or rBC and sulfate concentrations quite well, compared to previous comparisons. However, the aerosol seasonality at the surface is still too weak in most models. Concentrations of eBC and sulfate averaged over three surface sites are underestimated in winter/spring in all but one model (model means for January–March underestimated by 59 and 37 % for BC and sulfate, respectively), whereas concentrations in summer are overestimated in the model mean (by 88 and 44 % for July–September), but with overestimates as well as underestimates present in individual models. The most pronounced eBC underestimates, not included in the above multi-site average, are found for the station Tiksi in Siberia where the measured annual mean eBC concentration is 3 times higher than the average annual mean for all other stations. This suggests an underestimate of BC sources in Russia in the emission inventory used. Based on the campaign data, biomass burning was identified as another cause of the modeling problems. For sulfate, very large differences were found in the model ensemble, with an apparent anti-correlation between modeled surface concentrations and total atmospheric columns. There is a strong correlation between observed sulfate and eBC concentrations with consistent sulfate/eBC slopes found for all Arctic stations, indicating that the sources contributing to sulfate and BC are similar throughout the Arctic and that the aerosols are internally mixed and undergo similar removal. However, only three models reproduced this finding, whereas sulfate and BC are weakly correlated in the other models. Overall, no class of models (e.g., CTMs, CCMs) performed better than the others and differences are independent of model resolution.
Resumo:
In this paper we deal with robust inference in heteroscedastic measurement error models Rather than the normal distribution we postulate a Student t distribution for the observed variables Maximum likelihood estimates are computed numerically Consistent estimation of the asymptotic covariance matrices of the maximum likelihood and generalized least squares estimators is also discussed Three test statistics are proposed for testing hypotheses of interest with the asymptotic chi-square distribution which guarantees correct asymptotic significance levels Results of simulations and an application to a real data set are also reported (C) 2009 The Korean Statistical Society Published by Elsevier B V All rights reserved
Resumo:
The multivariate skew-t distribution (J Multivar Anal 79:93-113, 2001; J R Stat Soc, Ser B 65:367-389, 2003; Statistics 37:359-363, 2003) includes the Student t, skew-Cauchy and Cauchy distributions as special cases and the normal and skew-normal ones as limiting cases. In this paper, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis of repeated measures, pretest/post-test data, under multivariate null intercept measurement error model (J Biopharm Stat 13(4):763-771, 2003) where the random errors and the unobserved value of the covariate (latent variable) follows a Student t and skew-t distribution, respectively. The results and methods are numerically illustrated with an example in the field of dentistry.
Resumo:
Skew-normal distribution is a class of distributions that includes the normal distributions as a special case. In this paper, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis in a multivariate, null intercept, measurement error model [R. Aoki, H. Bolfarine, J.A. Achcar, and D. Leao Pinto Jr, Bayesian analysis of a multivariate null intercept error-in -variables regression model, J. Biopharm. Stat. 13(4) (2003b), pp. 763-771] where the unobserved value of the covariate (latent variable) follows a skew-normal distribution. The results and methods are applied to a real dental clinical trial presented in [A. Hadgu and G. Koch, Application of generalized estimating equations to a dental randomized clinical trial, J. Biopharm. Stat. 9 (1999), pp. 161-178].
Resumo:
In this article, we discuss inferential aspects of the measurement error regression models with null intercepts when the unknown quantity x (latent variable) follows a skew normal distribution. We examine first the maximum-likelihood approach to estimation via the EM algorithm by exploring statistical properties of the model considered. Then, the marginal likelihood, the score function and the observed information matrix of the observed quantities are presented allowing direct inference implementation. In order to discuss some diagnostics techniques in this type of models, we derive the appropriate matrices to assessing the local influence on the parameter estimates under different perturbation schemes. The results and methods developed in this paper are illustrated considering part of a real data set used by Hadgu and Koch [1999, Application of generalized estimating equations to a dental randomized clinical trial. Journal of Biopharmaceutical Statistics, 9, 161-178].
Resumo:
Influence diagnostics methods are extended in this article to the Grubbs model when the unknown quantity x (latent variable) follows a skew-normal distribution. Diagnostic measures are derived from the case-deletion approach and the local influence approach under several perturbation schemes. The observed information matrix to the postulated model and Delta matrices to the corresponding perturbed models are derived. Results obtained for one real data set are reported, illustrating the usefulness of the proposed methodology.
Resumo:
In many epidemiological studies it is common to resort to regression models relating incidence of a disease and its risk factors. The main goal of this paper is to consider inference on such models with error-prone observations and variances of the measurement errors changing across observations. We suppose that the observations follow a bivariate normal distribution and the measurement errors are normally distributed. Aggregate data allow the estimation of the error variances. Maximum likelihood estimates are computed numerically via the EM algorithm. Consistent estimation of the asymptotic variance of the maximum likelihood estimators is also discussed. Test statistics are proposed for testing hypotheses of interest. Further, we implement a simple graphical device that enables an assessment of the model`s goodness of fit. Results of simulations concerning the properties of the test statistics are reported. The approach is illustrated with data from the WHO MONICA Project on cardiovascular disease. Copyright (C) 2008 John Wiley & Sons, Ltd.
A robust Bayesian approach to null intercept measurement error model with application to dental data
Resumo:
Measurement error models often arise in epidemiological and clinical research. Usually, in this set up it is assumed that the latent variable has a normal distribution. However, the normality assumption may not be always correct. Skew-normal/independent distribution is a class of asymmetric thick-tailed distributions which includes the Skew-normal distribution as a special case. In this paper, we explore the use of skew-normal/independent distribution as a robust alternative to null intercept measurement error model under a Bayesian paradigm. We assume that the random errors and the unobserved value of the covariate (latent variable) follows jointly a skew-normal/independent distribution, providing an appealing robust alternative to the routine use of symmetric normal distribution in this type of model. Specific distributions examined include univariate and multivariate versions of the skew-normal distribution, the skew-t distributions, the skew-slash distributions and the skew contaminated normal distributions. The methods developed is illustrated using a real data set from a dental clinical trial. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)