Robust inference in an heteroscedastic measurement error model


Autoria(s): CASTRO, Mario de; GALEA, Manuel
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2010

Resumo

In this paper we deal with robust inference in heteroscedastic measurement error models Rather than the normal distribution we postulate a Student t distribution for the observed variables Maximum likelihood estimates are computed numerically Consistent estimation of the asymptotic covariance matrices of the maximum likelihood and generalized least squares estimators is also discussed Three test statistics are proposed for testing hypotheses of interest with the asymptotic chi-square distribution which guarantees correct asymptotic significance levels Results of simulations and an application to a real data set are also reported (C) 2009 The Korean Statistical Society Published by Elsevier B V All rights reserved

Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) - Chile

FONDECYT (Fondo Nacional de Desarrollo Cientifico y Tecnologico, Chile)[1070919]

Identificador

JOURNAL OF THE KOREAN STATISTICAL SOCIETY, v.39, n.4, p.439-447, 2010

1226-3192

http://producao.usp.br/handle/BDPI/28901

10.1016/j.jkss.2009.09.003

http://dx.doi.org/10.1016/j.jkss.2009.09.003

Idioma(s)

eng

Publicador

KOREAN STATISTICAL SOC

Relação

Journal of the Korean Statistical Society

Direitos

restrictedAccess

Copyright KOREAN STATISTICAL SOC

Palavras-Chave #Errors in variables models #Robust inference #Student t distribution #ECM algorithm #BASE-LINE RISK #REGRESSION #HETEROGENEITY #METAANALYSIS #EXPLANATION #VARIABLES #Statistics & Probability
Tipo

article

original article

publishedVersion