Robust inference in an heteroscedastic measurement error model
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2010
|
Resumo |
In this paper we deal with robust inference in heteroscedastic measurement error models Rather than the normal distribution we postulate a Student t distribution for the observed variables Maximum likelihood estimates are computed numerically Consistent estimation of the asymptotic covariance matrices of the maximum likelihood and generalized least squares estimators is also discussed Three test statistics are proposed for testing hypotheses of interest with the asymptotic chi-square distribution which guarantees correct asymptotic significance levels Results of simulations and an application to a real data set are also reported (C) 2009 The Korean Statistical Society Published by Elsevier B V All rights reserved Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) - Chile FONDECYT (Fondo Nacional de Desarrollo Cientifico y Tecnologico, Chile)[1070919] |
Identificador |
JOURNAL OF THE KOREAN STATISTICAL SOCIETY, v.39, n.4, p.439-447, 2010 1226-3192 http://producao.usp.br/handle/BDPI/28901 10.1016/j.jkss.2009.09.003 |
Idioma(s) |
eng |
Publicador |
KOREAN STATISTICAL SOC |
Relação |
Journal of the Korean Statistical Society |
Direitos |
restrictedAccess Copyright KOREAN STATISTICAL SOC |
Palavras-Chave | #Errors in variables models #Robust inference #Student t distribution #ECM algorithm #BASE-LINE RISK #REGRESSION #HETEROGENEITY #METAANALYSIS #EXPLANATION #VARIABLES #Statistics & Probability |
Tipo |
article original article publishedVersion |