Bayesian analysis for a skew extension of the multivariate null intercept measurement error model
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2008
|
Resumo |
Skew-normal distribution is a class of distributions that includes the normal distributions as a special case. In this paper, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis in a multivariate, null intercept, measurement error model [R. Aoki, H. Bolfarine, J.A. Achcar, and D. Leao Pinto Jr, Bayesian analysis of a multivariate null intercept error-in -variables regression model, J. Biopharm. Stat. 13(4) (2003b), pp. 763-771] where the unobserved value of the covariate (latent variable) follows a skew-normal distribution. The results and methods are applied to a real dental clinical trial presented in [A. Hadgu and G. Koch, Application of generalized estimating equations to a dental randomized clinical trial, J. Biopharm. Stat. 9 (1999), pp. 161-178]. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) |
Identificador |
JOURNAL OF APPLIED STATISTICS, v.35, n.11/Dez, p.1239-1251, 2008 0266-4763 http://producao.usp.br/handle/BDPI/28966 10.1080/02664760802319667 |
Idioma(s) |
eng |
Publicador |
ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD |
Relação |
Journal of Applied Statistics |
Direitos |
restrictedAccess Copyright ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD |
Palavras-Chave | #Skew-normal distribution #Gibbs algorithm #skewness #multivariate null intercepts model #measurement error #REGRESSION-MODELS #DISTRIBUTIONS #Statistics & Probability |
Tipo |
article original article publishedVersion |