Bayesian analysis of skew-t multivariate null intercept measurement error model


Autoria(s): LACHOS, Victor H.; CANCHO, Vicente G.; AOKI, Reiko
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2010

Resumo

The multivariate skew-t distribution (J Multivar Anal 79:93-113, 2001; J R Stat Soc, Ser B 65:367-389, 2003; Statistics 37:359-363, 2003) includes the Student t, skew-Cauchy and Cauchy distributions as special cases and the normal and skew-normal ones as limiting cases. In this paper, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis of repeated measures, pretest/post-test data, under multivariate null intercept measurement error model (J Biopharm Stat 13(4):763-771, 2003) where the random errors and the unobserved value of the covariate (latent variable) follows a Student t and skew-t distribution, respectively. The results and methods are numerically illustrated with an example in the field of dentistry.

Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Identificador

STATISTICAL PAPERS, v.51, n.3, p.531-545, 2010

0932-5026

http://producao.usp.br/handle/BDPI/28909

10.1007/s00362-008-0138-z

http://dx.doi.org/10.1007/s00362-008-0138-z

Idioma(s)

eng

Publicador

SPRINGER

Relação

Statistical Papers

Direitos

restrictedAccess

Copyright SPRINGER

Palavras-Chave #Skew-t distribution #Gibbs algorithm #Metropolis-Hasting #Skewness #Multivariate null intercepts model #Measurement error #MAXIMUM LIKELIHOOD ESTIMATION #REGRESSION-MODELS #DISTRIBUTIONS #Statistics & Probability
Tipo

article

original article

publishedVersion