Bayesian analysis of skew-t multivariate null intercept measurement error model
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2010
|
Resumo |
The multivariate skew-t distribution (J Multivar Anal 79:93-113, 2001; J R Stat Soc, Ser B 65:367-389, 2003; Statistics 37:359-363, 2003) includes the Student t, skew-Cauchy and Cauchy distributions as special cases and the normal and skew-normal ones as limiting cases. In this paper, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis of repeated measures, pretest/post-test data, under multivariate null intercept measurement error model (J Biopharm Stat 13(4):763-771, 2003) where the random errors and the unobserved value of the covariate (latent variable) follows a Student t and skew-t distribution, respectively. The results and methods are numerically illustrated with an example in the field of dentistry. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) |
Identificador |
STATISTICAL PAPERS, v.51, n.3, p.531-545, 2010 0932-5026 http://producao.usp.br/handle/BDPI/28909 10.1007/s00362-008-0138-z |
Idioma(s) |
eng |
Publicador |
SPRINGER |
Relação |
Statistical Papers |
Direitos |
restrictedAccess Copyright SPRINGER |
Palavras-Chave | #Skew-t distribution #Gibbs algorithm #Metropolis-Hasting #Skewness #Multivariate null intercepts model #Measurement error #MAXIMUM LIKELIHOOD ESTIMATION #REGRESSION-MODELS #DISTRIBUTIONS #Statistics & Probability |
Tipo |
article original article publishedVersion |