389 resultados para HEISENBERG PYROCHLORE ANTIFERROMAGNET
Resumo:
We propose to employ deformed commutation relations to treat many-body problems of composite particles. The deformation parameter is interpreted as a measure of the effects of the statistics of the internal degrees of freedom of the composite particles. A simple application of the method is made for the case of a gas of composite bosons.
Resumo:
We consider the (2+1)-dimensional gauged Thirring model in the Heisenberg picture. In this context we evaluate the vacuum polarization tensor as well as the corrected gauge boson propagator and address the issues of generation of mass and dynamics for the gauge boson (in the limits of QED 3 and Thirring model as a gauge theory, respectively) due to the radiative corrections.
Resumo:
We report on the realization of a capacitive dilatometer, designed for high-resolution measurements of length changes of a material for temperatures 1.4K ≤ T ≤ 300K and hydrostatic pressure P ≤ 250MPa. Helium ( 4He) is used as a pressure-transmitting medium, ensuring hydrostatic-pressure conditions. Special emphasis has been given to guarantee, to a good approximation, constant-pressure conditions during temperature sweeps. The performance of the dilatometer is demonstrated by measurements of the coefficient of thermal expansion at pressures P ≃ 0.1MPa (ambient pressure) and 104MPa on a single crystal of azurite, Cu 3(CO 3) 2(OH) 2, a quasi-one-dimensional spin S = 1/2 Heisenberg antiferromagnet. The results indicate a strong effect of pressure on the magnetic interactions in this system. © 2012 American Institute of Physics.
Montagem de um conjunto experimental destinado à verificação do princípio da incerteza de Heisenberg
Resumo:
In this paper we present the an experimental setup to check the Heisenberg uncertainty principle. The description of the experimental setup and of the theoretical foundations is aimed at promoting the familiarization of the students with the involved concepts.
Resumo:
The spin-1 anisotropic antiferromagnet NiCl2-4SC(NH2)(2) exhibits a field-induced quantum phase transition that is formally analogous to Bose-Einstein condensation. Here we present results of systematic high-field electron spin resonance (ESR) experimental and theoretical studies of this compound with a special emphasis on single-ion two-magnon bound states. In order to clarify some remaining discrepancies between theory and experiment, the frequency-field dependence of magnetic excitations in this material is reanalyzed. In particular, a more comprehensive interpretation of the experimental signature of single-ion two-magnon bound states is shown to be fully consistent with theoretical results. We also clarify the structure of the ESR spectrum in the so-called intermediate phase.
Resumo:
Zusammenfassung:Mit Hilfe einer neuen Formel für die Minerale der Pyrochlor-Gruppe werden sämtliche Endglieder der Na-Ca-Mikrolithe und der Ba-haltigen Mikrolithe aus der Pegmatit-Provinz Nazareno beschrieben: Die Na-reichsten Proben haben nahezu die Idealzusammensetzung eines idealen Pyrochlors, d.h. . Die Ca-reichsten Varietäten weisen maximal auf, wobei der Besetzungsanteil des Ca am A2+ ca. 93% beträgt. Die Ba-haltigen Mikrolithe sind durch eine Defektstruktur gekennzeichnet, wobei für das mögliche Endglied kein Beispiel in den Daten vorliegt. Das Endglied mit dem geringsten Defektcharakter hat folgende Stöchiometrie:
Resumo:
tbd
Resumo:
The purpose of this study is to analyse the regularity of a differential operator, the Kohn Laplacian, in two settings: the Heisenberg group and the strongly pseudoconvex CR manifolds. The Heisenberg group is defined as a space of dimension 2n+1 with a product. It can be seen in two different ways: as a Lie group and as the boundary of the Siegel UpperHalf Space. On the Heisenberg group there exists the tangential CR complex. From this we define its adjoint and the Kohn-Laplacian. Then we obtain estimates for the Kohn-Laplacian and find its solvability and hypoellipticity. For stating L^p and Holder estimates, we talk about homogeneous distributions. In the second part we start working with a manifold M of real dimension 2n+1. We say that M is a CR manifold if some properties are satisfied. More, we say that a CR manifold M is strongly pseudoconvex if the Levi form defined on M is positive defined. Since we will show that the Heisenberg group is a model for the strongly pseudo-convex CR manifolds, we look for an osculating Heisenberg structure in a neighborhood of a point in M, and we want this structure to change smoothly from a point to another. For that, we define Normal Coordinates and we study their properties. We also examinate different Normal Coordinates in the case of a real hypersurface with an induced CR structure. Finally, we define again the CR complex, its adjoint and the Laplacian operator on M. We study these new operators showing subelliptic estimates. For that, we don't need M to be pseudo-complex but we ask less, that is, the Z(q) and the Y(q) conditions. This provides local regularity theorems for Laplacian and show its hypoellipticity on M.
Resumo:
In questa tesi viene presentata un'analisi numerica dell'evoluzione dinamica del modello di Heisenberg XXZ, la cui simulazione è stata effettuata utilizzando l'algoritmo che va sotto il nome di DMRG. La transizione di fase presa in esame è quella dalla fase paramagnetica alla ferromagnetica: essa viene simulata in una catena di 12 siti per vari tempi di quench. In questo modo si sono potuti esplorare diversi regimi di transizione, da quello istantaneo al quasi-adiabatico. Come osservabili sono stati scelti l'entropia di entanglement, la magnetizzazione di mezza catena e lo spettro dell'entanglement, particolarmente adatti per caratterizzare la fisica non all'equilibrio di questo tipo di sistemi. Lo scopo dell'analisi è tentare una descrizione della dinamica fuori dall'equilibrio del modello per mezzo del meccanismo di Kibble-Zurek, che mette in relazione la sviluppo di una fase ordinata nel sistema che effettua la transizione quantistica alla densità di difetti topologici, la cui legge di scala è predicibile e legata agli esponenti critici universali caratterizzanti la transizione.