879 resultados para supervised teaching practic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel, implementation friendly and occlusion aware semi-supervised video segmentation algorithm using tree structured graphical models, which delivers pixel labels alongwith their uncertainty estimates. Our motivation to employ supervision is to tackle a task-specific segmentation problem where the semantic objects are pre-defined by the user. The video model we propose for this problem is based on a tree structured approximation of a patch based undirected mixture model, which includes a novel time-series and a soft label Random Forest classifier participating in a feedback mechanism. We demonstrate the efficacy of our model in cutting out foreground objects and multi-class segmentation problems in lengthy and complex road scene sequences. Our results have wide applicability, including harvesting labelled video data for training discriminative models, shape/pose/articulation learning and large scale statistical analysis to develop priors for video segmentation. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical modelling of interesting geotechnical problems has helped clarify behaviours and failure mechanisms of many civil engineering systems. Interesting visual information from physical modelling can also be used in teaching to foster interest in geotechnical engineering and recruit young researchers to our field. With this intention, the Teaching Committee of TC2 developed a web-based teaching resources centre. In this paper, the development and organisation of the resource centre using Wordpress. Wordpress is an open-source content management system which allows user content to be edited and site administration to be controlled remotely via a built-in interface. Example data from a centrifuge test on shallow foundations which could be used for undergraduate or graduate level courses is presented and its use illustrated. A discussion on the development of wiki-style addition to the resource centre for commonly used physical model terms is also presented. © 2010 Taylor & Francis Group, London.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semi-supervised clustering is the task of clustering data points into clusters where only a fraction of the points are labelled. The true number of clusters in the data is often unknown and most models require this parameter as an input. Dirichlet process mixture models are appealing as they can infer the number of clusters from the data. However, these models do not deal with high dimensional data well and can encounter difficulties in inference. We present a novel nonparameteric Bayesian kernel based method to cluster data points without the need to prespecify the number of clusters or to model complicated densities from which data points are assumed to be generated from. The key insight is to use determinants of submatrices of a kernel matrix as a measure of how close together a set of points are. We explore some theoretical properties of the model and derive a natural Gibbs based algorithm with MCMC hyperparameter learning. The model is implemented on a variety of synthetic and real world data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a probabilistic model to infer supervised latent variables in the Hamming space from observed data. Our model allows simultaneous inference of the number of binary latent variables, and their values. The latent variables preserve neighbourhood structure of the data in a sense that objects in the same semantic concept have similar latent values, and objects in different concepts have dissimilar latent values. We formulate the supervised infinite latent variable problem based on an intuitive principle of pulling objects together if they are of the same type, and pushing them apart if they are not. We then combine this principle with a flexible Indian Buffet Process prior on the latent variables. We show that the inferred supervised latent variables can be directly used to perform a nearest neighbour search for the purpose of retrieval. We introduce a new application of dynamically extending hash codes, and show how to effectively couple the structure of the hash codes with continuously growing structure of the neighbourhood preserving infinite latent feature space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relative (comparative) attributes are promising for thematic ranking of visual entities, which also aids in recognition tasks. However, attribute rank learning often requires a substantial amount of relational supervision, which is highly tedious, and apparently impractical for real-world applications. In this paper, we introduce the Semantic Transform, which under minimal supervision, adaptively finds a semantic feature space along with a class ordering that is related in the best possible way. Such a semantic space is found for every attribute category. To relate the classes under weak supervision, the class ordering needs to be refined according to a cost function in an iterative procedure. This problem is ideally NP-hard, and we thus propose a constrained search tree formulation for the same. Driven by the adaptive semantic feature space representation, our model achieves the best results to date for all of the tasks of relative, absolute and zero-shot classification on two popular datasets. © 2013 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neighbor embedding algorithm has been widely used in example-based super-resolution reconstruction from a single frame, which makes the assumption that neighbor patches embedded are contained in a single manifold. However, it is not always true for complicated texture structure. In this paper, we believe that textures may be contained in multiple manifolds, corresponding to classes. Under this assumption, we present a novel example-based image super-resolution reconstruction algorithm with clustering and supervised neighbor embedding (CSNE). First, a class predictor for low-resolution (LR) patches is learnt by an unsupervised Gaussian mixture model. Then by utilizing class label information of each patch, a supervised neighbor embedding is used to estimate high-resolution (HR) patches corresponding to LR patches. The experimental results show that the proposed method can achieve a better recovery of LR comparing with other simple schemes using neighbor embedding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Gaussian process latent variable model (GP-LVM) has been identified to be an effective probabilistic approach for dimensionality reduction because it can obtain a low-dimensional manifold of a data set in an unsupervised fashion. Consequently, the GP-LVM is insufficient for supervised learning tasks (e. g., classification and regression) because it ignores the class label information for dimensionality reduction. In this paper, a supervised GP-LVM is developed for supervised learning tasks, and the maximum a posteriori algorithm is introduced to estimate positions of all samples in the latent variable space. We present experimental evidences suggesting that the supervised GP-LVM is able to use the class label information effectively, and thus, it outperforms the GP-LVM and the discriminative extension of the GP-LVM consistently. The comparison with some supervised classification methods, such as Gaussian process classification and support vector machines, is also given to illustrate the advantage of the proposed method.