955 resultados para Diode
Resumo:
A novel Nd3+-doped lead fluorosilicate glass (NPS glass) is prepared by a two-step melting process. Based on the absorption spectrum a Judd-Ofelt theory analysis is made. The emission line width of NPS glass is 44.2nm. The fluorescence decay lifetime of the 4F3/2 level is 586±20μsec, and the stimulated emission cross-section is 0.87×10-20cm2 at 1056nm. A laser oscillation is occurred at 1062nm when pumped by 808nm Diode Laser. The slope efficiency is 23.7% with a 415mJ threshold. It is supposed that NPS glass is a good candidate for using in ultra-short pulse generation and amplification by the broad emission bandwidth and long fluorescence lifetime.
Resumo:
InGaN/GaN multiple quantum well-based light-emitting diode (LED) nanopillar arrays were fabricated using Ni self-assembled nanodots as etching mask. The Ni nanodots were fabricated with a density of 6 x 10(8)-1.5 x 10(9) cm(-2) and a dimension of 100-250 nm with varying Ni thickness and annealing duration time. Then LED nanopillar arrays with diameter of approximately 250 nm and height of 700 nm were fabricated by inductively coupled plasma etching. In comparison to the as-grown LED sample an enhancement by a factor of four of photoluminescence (PL) intensity is achieved for the nanopillars and a blueshift as well as a decrease in full width at half maximum of the PL peak are also observed. The method of additional chemical etching was used to remove the etching-induced damage. Then nano-LED devices were further completed using a planarization approach to deposit p-type electrode on the tips of nanopillars. The current-voltage curves of both nanopillars and planar LED devices are measured for comparison.
Resumo:
Electrical measurements were combined with surface techniques to study the Pt/Si interfaces at various silicide formation temperatures. Effects of deep centers on the Schottky barrier heights were studied. Hydrogen plasma treatment was used to passivate the impurity/defect centers at the interfaces, and the effects of hydrogenation on the Schottky barrier heights were also examined. Combining our previous study on the Pt/Si interfacial reaction, factors influencing the PtSi/Si Schottky barrier diode are discussed.
Resumo:
A GaAs/GaAlAs graded-index separate confinement single quantum well heterostructure single-mode ridge waveguide electroabsorption modulator was fabricated and investigated. For the modulator with a quantum well width of 100 angstrom and device length of 700-mu-m, an on/off ratio of 29.7 dB and estimated absorption insertion loss of 3 dB were obtained for TE polarised light with wavelength 8650 angstrom, and for TM polarisation the on/off ratio was 28.5 dB. With a switching voltage of 1 V, an on/off ratio of 15 dB was achieved. Photocurrent spectra exhibited a red shift of 600 angstrom of the absorption edge when the voltage applied to the PIN diode was varied from 0.5 to -7 V. The corresponding shift of the room temperature exciton peak energy was 96 meV.
Resumo:
With contributions from both three-dimensional (3D) electrons in heavily doped contacts and 2D electrons in the accumulation layer, a self-consistent calculation based on effective mass theory is presented for studying the anomalous behaviour of the quasi-bound levels in the accumulation layer and that in the central well of an asymmetric double barrier structure (DBS). By choosing the thickness of the incident barrier properly, it is revealed that these two quasi-bound levels may merge into a unique bound level in the off-resonance regime which shows a very good 2D nature in contrast to the conventional picture for level crossing. An evident intrinsic I-V bistability is also shown. It is noticeable that the effect of charge build-up in the central well is so strong that the electric field in the incident barrier even decreases when the applied bias increases within the resonant region.
Resumo:
We reported an efficient diode pumped Nd ! YVO, 1 064 nm laser passively mode-locked and Q-switched by a semiconductor saturable absorber mirror(SESAM). At the incident pump power of 7. 5 W, 2. 81 W average output power was obtained during stable CW mode locking with a repetition rate of 111 MHz. The optical conversion efficiency was 37. 5% , and the slope efficiency was 39%. So far as we know, this is the highest optical-optical conversion efficiency with a SESAM at home.
Resumo:
A fiber coupled module is fabricated with integrating the emitting light from four laser diode bars into multimode fiber bundle. The continuous wave (CW) output power of the module is about 130 W with a coupling efficiency of around 80%. The output power is very stable after the temperature cycling and vibration test. No apparent power decrease has been observed as the device working continuously for 500 h.
Resumo:
A diode-pumped CW mode-locked Nd
Resumo:
Continuous wave operation of a semiconductor laser diode based on five stacks of InAs quantum dots (QDs) embedded within strained InGaAs quantum wells as an active region is demonstrated. At room temperature, 355-mW output power at ground state of 1.33-1.35 microns for a 20-micron ridge-waveguide laser without facet coating is achieved. By optimizing the molecular beam epitaxy (MBE) growth conditions, the QD density per layer is raised to 4*10^(10) cm^(-2). The laser keeps lasing at ground state until the temperature reaches 65 Celsius degree.
Resumo:
By etching a second-order grating directly into the Al-free optical waveguide region of a ridgewaveguide(RW) AlGaInAs/AlGaAs distributed feedback(DFB) laser diode,a front facet output power of 30mW is obtained at about 820nm with a single longitudinal mode. The Al-free grating surface permits the re-growth of a high-quality cladding layer that yields excellent device performance. The threshold current of these laser diodes is 57mA,and the slope efficiency is about 0.32mW/mA.
Resumo:
A monolithically integrated optoelectronic receiver is presented. A silicon-based photo-diode and receiver circuits are integrated on identical substrates in order to eliminate the parasitics induced by hybrid packaging. Implemented in the present deep sub-micron MS/RF (mixed signal, radio frequency) CMOS,this monolithically OEIC takes advantage of several new features to improve the performance of the photo-diode and eventually the whole OEIC.
Resumo:
In this paper, we report a novel 1.3-μm uncooled AlGaInAs/InP multiple quantum well (MQW) ridge waveguide laser diodes. By optimizing the design of MQW structure and facet coatings, together with the application of reversed-mesa ridge waveguide (RM-RWG) structure, polyimide planarization, and lift-off processes technology, an uncooled 1.3-μm, 10-Gb/s directly modulated MQW ridge waveguide laser diode was successfully fabricated. The threshold current and the slope efficiency were 7 mA and 0.48 mW/mA, respectively. The directly modulated bandwidths of 11 and 9.2 GHz were achieved at room temperature and 80 Celsius degrees, respectively.
Resumo:
We report a diode end-pumped continuous wave (CW) passively mode-locked Nd:YVO4 laser with a homemade semiconductor saturable absorber mirror (SESAM). The maximum average output power is 5.3 W at the incident pump power of 17 W, which corresponds to an optical-optical conversion efficiency of 31.2% and slope efficiency of 34.7%. The corresponding optical spectrum has a 0.2-nm full width at half maximum (FWHM), and the pulse repetition rate is 83 MHz.
Resumo:
Material growth and device fabrication of the first 1.3μm quantum well (QW) edge emitting laser diodes in China are reported. Through the optimization of the molecular beam epitaxy (MBE) growth conditions and the tuning of the indium and nitrogen composition of the GalnNAs QWs, the emission wavelengths of the QWs can be tuned to 1.3μm. Ridge geometry waveguide laser diodes are fabricated. The lasing wavelength is 1.3μm under continuous current injection at room temperature with threshold current of 1kA/cm^2 for the laser diode structures with the cleaved facet mirrors. The output light power over 30mW is obtained.
Resumo:
A monolithic integrated CMOS preamplifier is presented for neural recording applications. Two AC-coupied capacitors are used to eliminate the large and random DC offsets existing in the electrode-electrolyte interface. Diode-connected nMOS transistors with a negative voltage between the gate and source are candidates for the large resistors necessary for the preamplifier. A novel analysis is given to determine the noise power spectral density. Simulation results show that the two-stage CMOS preamplifier in a closed-loop capacitive feedback configuration provides an AC in-band gain of 38.8dB,a DC gain of 0,and an input-referred noise of 277nVmax, integrated from 0. 1Hz to 1kHz. The preamplifier can eliminate the DC offset voltage and has low input-referred noise by novel circuit configuration and theoretical analysis.