914 resultados para path integral quantization
Resumo:
By using a coherent state quantization of paragrassmann variables, operators are constructed in finite Hilbert spaces. We thus obtain in a straightforward way a matrix representation of the paragrassmann algebra. This algebra of finite matrices realizes a deformed Weyl-Heisenberg algebra. The study of mean values in coherent states of some of these operators leads to interesting conclusions.
Resumo:
The topology of real-world complex networks, such as in transportation and communication, is always changing with time. Such changes can arise not only as a natural consequence of their growth, but also due to major modi. cations in their intrinsic organization. For instance, the network of transportation routes between cities and towns ( hence locations) of a given country undergo a major change with the progressive implementation of commercial air transportation. While the locations could be originally interconnected through highways ( paths, giving rise to geographical networks), transportation between those sites progressively shifted or was complemented by air transportation, with scale free characteristics. In the present work we introduce the path-star transformation ( in its uniform and preferential versions) as a means to model such network transformations where paths give rise to stars of connectivity. It is also shown, through optimal multivariate statistical methods (i.e. canonical projections and maximum likelihood classification) that while the US highways network adheres closely to a geographical network model, its path-star transformation yields a network whose topological properties closely resembles those of the respective airport transportation network.
Resumo:
The ever-increasing robustness and reliability of flow-simulation methods have consolidated CFD as a major tool in virtually all branches of fluid mechanics. Traditionally, those methods have played a crucial role in the analysis of flow physics. In more recent years, though, the subject has broadened considerably, with the development of optimization and inverse design applications. Since then, the search for efficient ways to evaluate flow-sensitivity gradients has received the attention of numerous researchers. In this scenario, the adjoint method has emerged as, quite possibly, the most powerful tool for the job, which heightens the need for a clear understanding of its conceptual basis. Yet, some of its underlying aspects are still subject to debate in the literature, despite all the research that has been carried out on the method. Such is the case with the adjoint boundary and internal conditions, in particular. The present work aims to shed more light on that topic, with emphasis on the need for an internal shock condition. By following the path of previous authors, the quasi-1D Euler problem is used as a vehicle to explore those concepts. The results clearly indicate that the behavior of the adjoint solution through a shock wave ultimately depends upon the nature of the objective functional.
Resumo:
A classical theorem of H. Hopf asserts that a closed connected smooth manifold admits a nowhere vanishing vector field if and only if its Euler characteristic is zero. R. Brown generalized Hopf`s result to topological manifolds, replacing vector fields with path fields. In this note, we give an equivariant analog of Brown`s theorem for locally smooth G-manifolds where G is a finite group.
Resumo:
Using the Luthar-Passi method, we investigate the classical Zassenhaus conjecture for the normalized unit group of the integral group ring of the Suzuki sporadic simple group Suz. As a consequence, for this group we confirm the Kimmerle`s conjecture on prime graphs.
Resumo:
Let ZG be the integral group ring of the finite nonabelian group G over the ring of integers Z, and let * be an involution of ZG that extends one of G. If x and y are elements of G, we investigate when pairs of the form (u(k,m)(x*), u(k,m)(x*)) or (u(k,m)(x), u(k,m)(y)), formed respectively by Bass cyclic and *-symmetric Bass cyclic units, generate a free noncyclic subgroup of the unit group of ZG.
Resumo:
In this article, we give a method to compute the rank of the subgroup of central units of ZG, for a finite metacyclic group, G, by means of Q-classes and R-classes. Then we construct a multiplicatively independent set u subset of Z(U(ZC(p,q))) and by applying our results, we prove that u generates a subgroup of finite index.
Resumo:
Marciniak and Sehgal showed that if u is a non-trivial bicyclic unit of an integral group ring then there is a bicyclic unit v such that u and v generate a non-abelian free group. A similar result does not hold for Bass cyclic units of infinite order based on non-central elements as some of them have finite order modulo the center. We prove a theorem that suggests that this is the only limitation to obtain a non-abelian free group from a given Bass cyclic unit. More precisely, we prove that if u is a Bass cyclic unit of an integral group ring ZG of a solvable and finite group G, such that u has infinite order modulo the center of U(ZG) and it is based on an element of prime order, then there is a non-abelian free group generated by a power of u and a power of a unit in ZG which is either a Bass cyclic unit or a bicyclic unit.
Resumo:
Let G be a group of odd order that contains a non-central element x whose order is either a prime p >= 5 or 3(l), with l >= 2. Then, in U(ZG), the group of units of ZG, we can find an alternating unit u based on x, and another unit v, which can be either a bicyclic or an alternating unit, such that for all sufficiently large integers m we have that < u(m), v(m)> = < u(m)> * < v(m)> congruent to Z * Z.
Resumo:
If * : G -> G is an involution on the finite group G, then * extends to an involution on the integral group ring Z[G] . In this paper, we consider whether bicyclic units u is an element of Z[G] exist with the property that the group < u, u*> generated by u and u* is free on the two generators. If this occurs, we say that (u, u*)is a free bicyclic pair. It turns out that the existence of u depends strongly upon the structure of G and on the nature of the involution. One positive result here is that if G is a nonabelian group with all Sylow subgroups abelian, then for any involution *, Z[G] contains a free bicyclic pair.
Resumo:
To connect different electrical, network and data devices with the minimum cost and shortest path, is a complex job. In huge buildings, where the devices are placed at different locations on different floors and only some specific routes are available to pass the cables and buses, the shortest path search becomes more complex. The aim of this thesis project is, to develop an application which indentifies the best path to connect all objects or devices by following the specific routes.To address the above issue we adopted three algorithms Greedy Algorithm, Simulated Annealing and Exhaustive search and analyzed their results. The given problem is similar to Travelling Salesman Problem. Exhaustive search is a best algorithm to solve this problem as it checks each and every possibility and give the accurate result but it is an impractical solution because of huge time consumption. If no. of objects increased from 12 it takes hours to search the shortest path. Simulated annealing is emerged with some promising results with lower time cost. As of probabilistic nature, Simulated annealing could be non optimal but it gives a near optimal solution in a reasonable duration. Greedy algorithm is not a good choice for this problem. So, simulated annealing is proved best algorithm for this problem. The project has been implemented in C-language which takes input and store output in an Excel Workbook
Resumo:
This thesis aims to present a color segmentation approach for traffic sign recognition based on LVQ neural networks. The RGB images were converted into HSV color space, and segmented using LVQ depending on the hue and saturation values of each pixel in the HSV color space. LVQ neural network was used to segment red, blue and yellow colors on the road and traffic signs to detect and recognize them. LVQ was effectively applied to 536 sampled images taken from different countries in different conditions with 89% accuracy and the execution time of each image among 31 images was calculated in between 0.726sec to 0.844sec. The method was tested in different environmental conditions and LVQ showed its capacity to reasonably segment color despite remarkable illumination differences. The results showed high robustness.